Send to

Choose Destination
Cell Res. 2008 Aug;18(8):834-45. doi: 10.1038/cr.2008.68.

Downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival.

Author information

Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon 1, Bât. Gregor Mendel, 16, rue R. Dubois, 69622 Villeurbanne, France.


Sustained expression of the Spi-1/PU.1 and Fli-1 oncoproteins blocks globin gene activation in mouse erythroleukemia cells; however, only Spi-1/PU.1 expression inhibits the inclusion of exon 16 in the mature 4.1R mRNA. This splicing event is crucial for a functional 4.1R protein and, therefore, for red blood cell membrane integrity. This report demonstrates that Spi-1/PU.1 downregulation induces the activation of TRIM10/hematopoietic RING finger 1 (HERF1), a member of the tripartite motif (TRIM)/RBCC protein family needed for globin gene transcription. Additionally, we demonstrate that TRIM10/HERF1 is required for the regulated splicing of exon 16 during late erythroid differentiation. Using inducible overexpression and silencing approaches, we found that: (1) TRIM10/HERF1 knockdown inhibits hemoglobin production and exon splicing and triggers cell apoptosis in dimethylsulfoxide (DMSO)-induced cells; (2) TRIM10/HERF1 upregulation is required but is insufficient on its own to activate exon retention; (3) Fli-1 has no effect on TRIM10/HERF1 expression, whereas either DMSO-induced downregulation or shRNA-knockdown of Spi-1/PU.1 expression is sufficient to activate TRIM10/HERF1 expression; and (4) Spi-1/PU.1 knockdown triggers both the transcription and the splicing events independently of the chemical induction. Altogether, these data indicate that primary Spi-1/PU.1 downregulation acts on late erythroid differentiation through at least two pathways, one of which requires TRIM10/HERF1 upregulation and parallels the Spi-1/PU.1-induced Fli-1 shutoff regulatory cascade.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center