Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 340

1.

Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology.

McClatchy DM 3rd, Zuurbier RA, Wells WA, Paulsen KD, Pogue BW.

Breast Cancer Res Treat. 2018 Sep 17. doi: 10.1007/s10549-018-4951-3. [Epub ahead of print]

PMID:
30225621
2.

Grant Funding Needs Parallel the Start-Up Venture: An Analogy for Translational Research Success.

Pogue BW.

J Biomed Opt. 2018 Aug;23(8):1-3. doi: 10.1117/1.JBO.23.8.080101.

PMID:
30171677
3.

Optimizing Glioma Detection using an EGFR-Targeted Fluorescent Affibody.

Ribeiro de Souza AL, Marra K, Gunn J, Samkoe KS, Hull S, Paulsen KD, Pogue BW.

Photochem Photobiol. 2018 Aug 21. doi: 10.1111/php.13003. [Epub ahead of print]

PMID:
30129069
4.

Observation of short wavelength infrared (SWIR) Cherenkov emission.

Cao X, Jiang S, Jia M, Gunn J, Miao T, Davis SC, Bruza P, Pogue BW.

Opt Lett. 2018 Aug 15;43(16):3854-3857. doi: 10.1364/OL.43.003854.

PMID:
30106900
5.

Can novel technologies improve breast conserving surgery?

Pogue BW.

Breast Cancer Res. 2018 Aug 3;20(1):85. doi: 10.1186/s13058-018-1016-9. No abstract available.

6.

Weighting function effects in a direct regularization method for image-guided near-infrared spectral tomography of breast cancer.

Feng J, Jiang S, Pogue BW, Paulsen K.

Biomed Opt Express. 2018 Jun 25;9(7):3266-3283. doi: 10.1364/BOE.9.003266. eCollection 2018 Jul 1.

7.

Medical Perspective Articles to Stimulate the Field for Needs-Finding.

Pogue BW.

J Biomed Opt. 2018 Jun;23(6):1. doi: 10.1117/1.JBO.23.6.060101.

PMID:
29885116
8.

Direct Regularization From Co-Registered Contrast MRI Improves Image Quality of MRI-Guided Near-Infrared Spectral Tomography of Breast Lesions.

Zhang L, Jiang S, Zhao Y, Feng J, Pogue BW, Paulsen KD.

IEEE Trans Med Imaging. 2018 May;37(5):1247-1252. doi: 10.1109/TMI.2018.2794548.

PMID:
29727287
9.

Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system.

Andreozzi JM, Mooney KE, Brůža P, Curcuru A, Gladstone DJ, Pogue BW, Green O.

Med Phys. 2018 Jun;45(6):2647-2659. doi: 10.1002/mp.12919. Epub 2018 May 3.

PMID:
29663429
10.

Comparison of Blue and White Lamp Light with Sunlight for Daylight-Mediated, 5-ALA Photodynamic Therapy, in vivo.

Marra K, LaRochelle EP, Chapman MS, Hoopes PJ, Lukovits K, Maytin EV, Hasan T, Pogue BW.

Photochem Photobiol. 2018 Sep;94(5):1049-1057. doi: 10.1111/php.12923. Epub 2018 May 16.

PMID:
29663426
11.

Improving treatment geometries in total skin electron therapy: Experimental investigation of linac angles and floor scatter dose contributions using Cherenkov imaging.

Andreozzi JM, Brůža P, Tendler II, Mooney KE, Jarvis LA, Cammin J, Li H, Pogue BW, Gladstone DJ.

Med Phys. 2018 Jun;45(6):2639-2646. doi: 10.1002/mp.12917. Epub 2018 May 6.

PMID:
29663425
12.

Fluorescence-guided surgery and intervention - An AAPM emerging technology blue paper.

Pogue BW, Zhu TC, Ntziachristos V, Paulsen KD, Wilson BC, Pfefer J, Nordstrom RJ, Litorja M, Wabnitz H, Chen Y, Gioux S, Tromberg BJ, Yodh AG.

Med Phys. 2018 Jun;45(6):2681-2688. doi: 10.1002/mp.12909. Epub 2018 Apr 25.

PMID:
29633297
13.

Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy.

Bruza P, Gollub SL, Andreozzi JM, Tendler II, Williams BB, Jarvis LA, Gladstone DJ, Pogue BW.

Phys Med Biol. 2018 May 2;63(9):095009. doi: 10.1088/1361-6560/aaba19.

PMID:
29588437
14.

Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom.

Ahmed SR, Jia JM, Bruza P, Vinogradov S, Jiang S, Gladstone DJ, Jarvis LA, Pogue BW.

J Biomed Opt. 2018 Mar;23(3):1-4. doi: 10.1117/1.JBO.23.3.030504.

PMID:
29560623
15.

Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence.

LaRochelle EPM, Shell JR, Gunn JR, Davis SC, Pogue BW.

Phys Med Biol. 2018 Apr 20;63(8):085019. doi: 10.1088/1361-6560/aab83b.

PMID:
29558363
16.

Application of Fluorescence-Guided Surgery to Subsurface Cancers Requiring Wide Local Excision: Literature Review and Novel Developments Toward Indirect Visualization.

Samkoe KS, Bates BD, Elliott JT, LaRochelle E, Gunn JR, Marra K, Feldwisch J, Ramkumar DB, Bauer DF, Paulsen KD, Pogue BW, Henderson ER.

Cancer Control. 2018 Jan-Mar;25(1):1073274817752332. doi: 10.1177/1073274817752332. Review.

17.

Algorithm development for intrafraction radiotherapy beam edge verification from Cherenkov imaging.

Snyder C, Pogue BW, Jermyn M, Tendler I, Andreozzi JM, Bruza P, Krishnaswamy V, Gladstone DJ, Jarvis LA.

J Med Imaging (Bellingham). 2018 Jan;5(1):015001. doi: 10.1117/1.JMI.5.1.015001. Epub 2018 Jan 2.

PMID:
29322071
18.

Biomedical Optics Scientific Community.

Pogue BW.

J Biomed Opt. 2018 Jan;23(1):1. doi: 10.1117/1.JBO.23.1.010101.

PMID:
29302956
19.

Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision.

Samkoe KS, Bates BD, Tselepidakis NN, DSouza AV, Gunn JR, Ramkumar DB, Paulsen KD, Pogue BW, Henderson ER.

J Biomed Opt. 2017 Dec;22(12):1-12. doi: 10.1117/1.JBO.22.12.121613.

PMID:
29274143
20.

Cherenkov-excited Multi-Fluorophore Sensing in Tissue-Simulating Phantoms and In Vivo from External Beam Radiotherapy.

Dsouza A, Lin H, Gunn JR, Gladstone DJ, Jarvis LA, Pogue BW.

Radiat Res. 2018 Feb;189(2):197-204. doi: 10.1667/RR14943.1. Epub 2017 Dec 18.

PMID:
29251551

Supplemental Content

Loading ...
Support Center