Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Corrigendum: YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells.

Belin S, Herron J, VerPlank JJS, Park Y, Feltri LM, Poitelon Y.

Front Mol Neurosci. 2019 Oct 18;12:256. doi: 10.3389/fnmol.2019.00256. eCollection 2019.

2.

Molecular mechanism for the multiple sclerosis risk variant rs17594362.

Kim D, Park Y.

Hum Mol Genet. 2019 Sep 11. pii: ddz216. doi: 10.1093/hmg/ddz216. [Epub ahead of print]

PMID:
31509193
3.

YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells.

Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P.

Front Mol Neurosci. 2019 Jul 17;12:177. doi: 10.3389/fnmol.2019.00177. eCollection 2019. Erratum in: Front Mol Neurosci. 2019 Oct 18;12:256.

4.

A principled strategy for mapping enhancers to genes.

Kim D, An H, Shearer RS, Sharif M, Fan C, Choi JO, Ryu S, Park Y.

Sci Rep. 2019 Jul 30;9(1):11043. doi: 10.1038/s41598-019-47521-w.

5.

Elucidating the transactivation domain of the pleiotropic transcription factor Myrf.

Choi JO, Fan C, Kim D, Sharif M, An H, Park Y.

Sci Rep. 2018 Aug 30;8(1):13075. doi: 10.1038/s41598-018-31477-4.

6.

Homo-trimerization is essential for the transcription factor function of Myrf for oligodendrocyte differentiation.

Kim D, Choi JO, Fan C, Shearer RS, Sharif M, Busch P, Park Y.

Nucleic Acids Res. 2017 May 19;45(9):5112-5125. doi: 10.1093/nar/gkx080.

7.

A Bacteriophage tailspike domain promotes self-cleavage of a human membrane-bound transcription factor, the myelin regulatory factor MYRF.

Li Z, Park Y, Marcotte EM.

PLoS Biol. 2013;11(8):e1001624. doi: 10.1371/journal.pbio.1001624. Epub 2013 Aug 13.

8.

Flaws in evaluation schemes for pair-input computational predictions.

Park Y, Marcotte EM.

Nat Methods. 2012 Dec;9(12):1134-6. doi: 10.1038/nmeth.2259. No abstract available.

9.

Revisiting the negative example sampling problem for predicting protein-protein interactions.

Park Y, Marcotte EM.

Bioinformatics. 2011 Nov 1;27(21):3024-8. doi: 10.1093/bioinformatics/btr514. Epub 2011 Sep 9.

10.

Statistical analysis and exposure status classification of transmembrane beta barrel residues.

Hayat S, Park Y, Helms V.

Comput Biol Chem. 2011 Apr;35(2):96-107. doi: 10.1016/j.compbiolchem.2011.03.002. Epub 2011 Mar 30.

PMID:
21531175
11.

Prediction of the exposure status of transmembrane beta barrel residues from protein sequence.

Hayat S, Walter P, Park Y, Helms V.

J Bioinform Comput Biol. 2011 Feb;9(1):43-65.

PMID:
21328706
12.
13.

MINS2: revisiting the molecular code for transmembrane-helix recognition by the Sec61 translocon.

Park Y, Helms V.

Bioinformatics. 2008 Aug 15;24(16):1819-20. doi: 10.1093/bioinformatics/btn255. Epub 2008 Jun 10.

PMID:
18544549
14.

Prediction of the translocon-mediated membrane insertion free energies of protein sequences.

Park Y, Helms V.

Bioinformatics. 2008 May 15;24(10):1271-7. doi: 10.1093/bioinformatics/btn114. Epub 2008 Apr 3.

PMID:
18388143
15.
16.

On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins.

Park Y, Helms V.

Bioinformatics. 2007 Mar 15;23(6):701-8. Epub 2007 Jan 18.

PMID:
17237049
18.
19.

Novel scoring function for modeling structures of oligomers of transmembrane alpha-helices.

Park Y, Elsner M, Staritzbichler R, Helms V.

Proteins. 2004 Nov 15;57(3):577-85.

PMID:
15382237

Supplemental Content

Loading ...
Support Center