Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 539

1.

Rapid gene cloning in cereals.

Bettgenhaeuser J, Krattinger SG.

Theor Appl Genet. 2018 Oct 19. doi: 10.1007/s00122-018-3210-7. [Epub ahead of print] Review.

PMID:
30341495
2.

Comparative Genomics of Lactobacillus brevis Reveals a Significant Plasmidome Overlap of Brewery and Insect Isolates.

Fraunhofer ME, Geißler AJ, Behr J, Vogel RF.

Curr Microbiol. 2018 Oct 19. doi: 10.1007/s00284-018-1581-2. [Epub ahead of print]

PMID:
30341451
3.

Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance.

Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann D, Anand A, Yang L, Nizet V, Monk JM, Palsson BO.

Nat Commun. 2018 Oct 17;9(1):4306. doi: 10.1038/s41467-018-06634-y.

4.

High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes.

Zoledowska S, Motyka-Pomagruk A, Sledz W, Mengoni A, Lojkowska E.

BMC Genomics. 2018 Oct 16;19(1):751. doi: 10.1186/s12864-018-5140-9.

5.

Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars.

Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D, Zhang X.

Plant Biotechnol J. 2018 Oct 13. doi: 10.1111/pbi.13022. [Epub ahead of print]

6.

Factors driving effective population size and pan-genome evolution in bacteria.

Bobay LM, Ochman H.

BMC Evol Biol. 2018 Oct 12;18(1):153. doi: 10.1186/s12862-018-1272-4.

7.

Genomic and metabolic features of the Bacillus amyloliquefaciens group- B. amyloliquefaciens, B. velezensis, and B. siamensis- revealed by pan-genome analysis.

Chun BH, Kim KH, Jeong SE, Jeon CO.

Food Microbiol. 2019 Feb;77:146-157. doi: 10.1016/j.fm.2018.09.001. Epub 2018 Sep 5.

PMID:
30297045
8.

Exclusivity offers a sound yet practical species criterion for bacteria despite abundant gene flow.

Wright ES, Baum DA.

BMC Genomics. 2018 Oct 3;19(1):724. doi: 10.1186/s12864-018-5099-6.

9.
10.

Comparative genome analysis provides deep insights into Aeromonas hydrophila taxonomy and virulence-related factors.

Awan F, Dong Y, Liu J, Wang N, Mushtaq MH, Lu C, Liu Y.

BMC Genomics. 2018 Sep 26;19(1):712. doi: 10.1186/s12864-018-5100-4.

11.

Efficient inference of homologs in large eukaryotic pan-proteomes.

Sheikhizadeh Anari S, de Ridder D, Schranz ME, Smit S.

BMC Bioinformatics. 2018 Sep 26;19(1):340. doi: 10.1186/s12859-018-2362-4.

12.

Multi-Year Persistence of Verotoxigenic Escherichia coli (VTEC) in a Closed Canadian Beef Herd: A Cohort Study.

Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ.

Front Microbiol. 2018 Aug 31;9:2040. doi: 10.3389/fmicb.2018.02040. eCollection 2018.

13.

Spfy: an integrated graph database for real-time prediction of bacterial phenotypes and downstream comparative analyses.

Le KK, Whiteside MD, Hopkins JE, Gannon VPJ, Laing CR.

Database (Oxford). 2018 Jan 1;2018:1-10. doi: 10.1093/database/bay086.

14.

PGAweb: A Web Server for Bacterial Pan-Genome Analysis.

Chen X, Zhang Y, Zhang Z, Zhao Y, Sun C, Yang M, Wang J, Liu Q, Zhang B, Chen M, Yu J, Wu J, Jin Z, Xiao J.

Front Microbiol. 2018 Aug 21;9:1910. doi: 10.3389/fmicb.2018.01910. eCollection 2018.

15.

Pan-Parastagonospora Comparative Genome Analysis-Effector Prediction and Genome Evolution.

Syme RA, Tan KC, Rybak K, Friesen TL, McDonald BA, Oliver RP, Hane JK.

Genome Biol Evol. 2018 Sep 1;10(9):2443-2457. doi: 10.1093/gbe/evy192.

16.

Pan-Genomic Study of Mycobacterium tuberculosis Reflecting the Primary/Secondary Genes, Generality/Individuality, and the Interconversion Through Copy Number Variations.

Yang T, Zhong J, Zhang J, Li C, Yu X, Xiao J, Jia X, Ding N, Ma G, Wang G, Yue L, Liang Q, Sheng Y, Sun Y, Huang H, Chen F.

Front Microbiol. 2018 Aug 17;9:1886. doi: 10.3389/fmicb.2018.01886. eCollection 2018.

17.

Complete genome sequencing and analysis of endophytic Sphingomonas sp. LK11 and its potential in plant growth.

Asaf S, Khan AL, Khan MA, Al-Harrasi A, Lee IJ.

3 Biotech. 2018 Sep;8(9):389. doi: 10.1007/s13205-018-1403-z. Epub 2018 Aug 28.

18.

Large-Scale Comparative Analysis of Microbial Pan-genomes using PanOCT.

Inman JM, Sutton GG, Beck E, Brinkac LM, Clarke TH, Fouts DE.

Bioinformatics. 2018 Aug 25. doi: 10.1093/bioinformatics/bty744. [Epub ahead of print]

PMID:
30165579
19.

Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses.

Ou L, Li D, Lv J, Chen W, Zhang Z, Li X, Yang B, Zhou S, Yang S, Li W, Gao H, Zeng Q, Yu H, Ouyang B, Li F, Liu F, Zheng J, Liu Y, Wang J, Wang B, Dai X, Ma Y, Zou X.

New Phytol. 2018 Oct;220(2):360-363. doi: 10.1111/nph.15413. Epub 2018 Aug 21. No abstract available.

PMID:
30129229
20.

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y, Bloom J, Pestel-Caron M, Dahyot S, Lebeurre J, Prévost G.

BMC Genomics. 2018 Aug 20;19(1):621. doi: 10.1186/s12864-018-4978-1.

Supplemental Content

Loading ...
Support Center