Format
Sort by
Items per page

Send to

Choose Destination

Best matches for microRNA alzheimer's:

Alzheimer's Disease and ncRNAs. Maoz R et al. Adv Exp Med Biol. (2017)

MicroRNA landscape in Alzheimer's disease. Cogoni C et al. CNS Neurol Disord Drug Targets. (2015)

MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Kumar S et al. Hum Mol Genet. (2017)

Search results

Items: 1 to 20 of 757

1.

MicroRNA-128 knockout inhibits the development of Alzheimer's disease by targeting PPARγ in mouse models.

Liu Y, Zhang Y, Liu P, Bai H, Li X, Xiao J, Yuan Q, Geng S, Yin H, Zhang H, Wang Z, Li J, Wang S, Wang Y.

Eur J Pharmacol. 2018 Nov 6. pii: S0014-2999(18)30653-8. doi: 10.1016/j.ejphar.2018.11.004. [Epub ahead of print]

PMID:
30412727
2.

microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer.

Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U.

Ageing Res Rev. 2018 Nov 1. pii: S1568-1637(18)30214-9. doi: 10.1016/j.arr.2018.10.008. [Epub ahead of print] Review.

PMID:
30391753
3.

Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review.

Lemche E.

Curr Genomics. 2018 Nov;19(7):522-602. doi: 10.2174/1389202919666171229145156. Review.

PMID:
30386171
4.

Extracellular vesicles in liver disease and beyond.

Morán L, Cubero FJ.

World J Gastroenterol. 2018 Oct 28;24(40):4519-4526. doi: 10.3748/wjg.v24.i40.4519.

5.

Aging and aging-associated diseases: a microRNA-based endocrine regulation hypothesis.

Umansky S.

Aging (Albany NY). 2018 Oct 29;10(10):2557-2569. doi: 10.18632/aging.101612.

6.
7.

Circulating Plasma microRNAs are Altered with Amyloidosis in a Mouse Model of Alzheimer's Disease.

Ryan MM, Guévremont D, Mockett BG, Abraham WC, Williams JM.

J Alzheimers Dis. 2018;66(2):835-852. doi: 10.3233/JAD-180385.

PMID:
30347618
8.
9.

Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer's Disease.

Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA.

Front Cell Neurosci. 2018 Sep 24;12:317. doi: 10.3389/fncel.2018.00317. eCollection 2018. Review.

10.

Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology.

Sierksma A, Lu A, Salta E, Vanden Eynden E, Callaerts-Vegh Z, D'Hooge R, Blum D, Buée L, Fiers M, De Strooper B.

Mol Neurodegener. 2018 Oct 12;13(1):54. doi: 10.1186/s13024-018-0285-1.

11.

The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE.

Jun S, Datta S, Wang L, Pegany R, Cano M, Handa JT.

Exp Eye Res. 2018 Oct 5. pii: S0014-4835(18)30398-1. doi: 10.1016/j.exer.2018.09.023. [Epub ahead of print] Review.

PMID:
30292489
12.

Revealing post-transcriptional microRNA-mRNA regulations in Alzheimer's disease through ensemble graphs.

Armañanzas R.

BMC Genomics. 2018 Sep 24;19(Suppl 7):668. doi: 10.1186/s12864-018-5025-y.

13.

Omics-based biomarkers for the early Alzheimer Disease diagnosis and reliable therapeutic targets development.

Pena-Bautista C, Baquero M, Vento M, Chafer-Pericas C.

Curr Neuropharmacol. 2018 Sep 26. doi: 10.2174/1570159X16666180926123722. [Epub ahead of print]

PMID:
30255758
14.

Elevated microRNA-520d-5p in the serum of patients with Parkinson's disease, possibly through regulation of cereloplasmin expression.

Jin L, Wan W, Wang L, Wang C, Xiao J, Zhang F, Zhao J, Wang J, Zhan C, Zhong C.

Neurosci Lett. 2018 Nov 20;687:88-93. doi: 10.1016/j.neulet.2018.09.034. Epub 2018 Sep 20.

PMID:
30243884
15.

miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP+ -induced SH-SY5Y cells.

Shanesazzade Z, Peymani M, Ghaedi K, Nasr Esfahani MH.

Mol Genet Genomic Med. 2018 Sep 16. doi: 10.1002/mgg3.469. [Epub ahead of print]

16.

Effect of Regulatory Network of Exosomes and microRNAs on Neurodegenerative Diseases.

Li D, Li YP, Li YX, Zhu XH, Du XG, Zhou M, Li WB, Deng HY.

Chin Med J (Engl). 2018 Sep 20;131(18):2216-2225. doi: 10.4103/0366-6999.240817. Review.

17.

Exosomes and microRNAs: New potential therapeutic candidates in Alzheimer disease therapy.

Iranifar E, Seresht BM, Momeni F, Fadaei E, Mehr MH, Ebrahimi Z, Rahmati M, Kharazinejad E, Mirzaei H.

J Cell Physiol. 2018 Sep 7. doi: 10.1002/jcp.27214. [Epub ahead of print] Review.

PMID:
30191975
18.

Inhibition of MicroRNA-96 Ameliorates Cognitive Impairment and Inactivation Autophagy Following Chronic Cerebral Hypoperfusion in the Rat.

Liu P, Liu P, Wang Z, Fang S, Liu Y, Wang J, Liu W, Wang N, Chen L, Wang J, Zhang H, Wang L.

Cell Physiol Biochem. 2018;49(1):78-86. doi: 10.1159/000492844. Epub 2018 Aug 22.

19.

Micro-RNA-137 Inhibits Tau Hyperphosphorylation in Alzheimer's Disease and Targets the CACNA1C Gene in Transgenic Mice and Human Neuroblastoma SH-SY5Y Cells.

Jiang Y, Xu B, Chen J, Sui Y, Ren L, Li J, Zhang H, Guo L, Sun X.

Med Sci Monit. 2018 Aug 13;24:5635-5644. doi: 10.12659/MSM.908765.

20.

Stem cell- and gene-based therapies as potential candidates in Alzheimer's therapy.

Hosseini SA, Mohammadi R, Noruzi S, Mohamadi Y, Azizian M, Mousavy SM, Ghasemi F, Hesari A, Sahebkar A, Salarinia R, Aghdam AM, Mirzaei H.

J Cell Biochem. 2018 Nov;119(11):8723-8736. doi: 10.1002/jcb.27202. Epub 2018 Aug 3.

PMID:
30074262

Supplemental Content

Loading ...
Support Center