Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 152

1.

Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures.

Brahmachari S, Marko JF.

Proc Natl Acad Sci U S A. 2019 Nov 22. pii: 201906355. doi: 10.1073/pnas.1906355116. [Epub ahead of print]

PMID:
31757850
2.

How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation.

Erbaş A, Marko JF.

Curr Opin Chem Biol. 2019 Oct 2;53:118-124. doi: 10.1016/j.cbpa.2019.08.007. [Epub ahead of print] Review.

PMID:
31586479
3.

Mechanical unfolding of spectrin reveals a super-exponential dependence of unfolding rate on force.

Renn JP, Bhattacharyya S, Bai H, He C, Li H, Oberhauser AF, Marko JF, Makarov DE, Matouschek A.

Sci Rep. 2019 Jul 31;9(1):11101. doi: 10.1038/s41598-019-46525-w.

4.

Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation.

Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM, Herman C, Backman V, O'Halloran T, Adam SA, Goldman RD, Banigan EJ, Marko JF.

Mol Biol Cell. 2019 Aug 1;30(17):2320-2330. doi: 10.1091/mbc.E19-05-0286.

5.

Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation.

Stephens AD, Liu PZ, Kandula V, Chen H, Almassalha LM, Herman C, Backman V, O'Halloran T, Adam SA, Goldman RD, Banigan EJ, Marko JF.

Mol Biol Cell. 2019 Jun 19:mbcE19050286T. doi: 10.1091/mbc.E19-05-0286-T. [Epub ahead of print]

PMID:
31216230
6.

DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes.

Marko JF, De Los Rios P, Barducci A, Gruber S.

Nucleic Acids Res. 2019 Jul 26;47(13):6956-6972. doi: 10.1093/nar/gkz497.

7.

Receptor-Ligand Rebinding Kinetics in Confinement.

Erbaş A, Olvera de la Cruz M, Marko JF.

Biophys J. 2019 May 7;116(9):1609-1624. doi: 10.1016/j.bpj.2019.02.033. Epub 2019 Apr 5.

PMID:
31029377
8.

Twist-bend coupling and the statistical mechanics of the twistable wormlike-chain model of DNA: Perturbation theory and beyond.

Nomidis SK, Skoruppa E, Carlon E, Marko JF.

Phys Rev E. 2019 Mar;99(3-1):032414. doi: 10.1103/PhysRevE.99.032414.

PMID:
30999490
9.

Multimodal interference-based imaging of nanoscale structure and macromolecular motion uncovers UV induced cellular paroxysm.

Gladstein S, Almassalha LM, Cherkezyan L, Chandler JE, Eshein A, Eid A, Zhang D, Wu W, Bauer GM, Stephens AD, Morochnik S, Subramanian H, Marko JF, Ameer GA, Szleifer I, Backman V.

Nat Commun. 2019 Apr 10;10(1):1652. doi: 10.1038/s41467-019-09717-6.

10.

Chromatin's physical properties shape the nucleus and its functions.

Stephens AD, Banigan EJ, Marko JF.

Curr Opin Cell Biol. 2019 Jun;58:76-84. doi: 10.1016/j.ceb.2019.02.006. Epub 2019 Mar 16. Review.

PMID:
30889417
11.

Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics.

Biggs R, Liu PZ, Stephens AD, Marko JF.

Mol Biol Cell. 2019 Mar 21;30(7):820-827. doi: 10.1091/mbc.E18-09-0592. Epub 2019 Jan 9.

12.

DNA Mechanics and Topology.

Brahmachari S, Marko JF.

Adv Exp Med Biol. 2018;1092:11-39. doi: 10.1007/978-3-319-95294-9_2. Review.

PMID:
30368746
13.

Bend-Induced Twist Waves and the Structure of Nucleosomal DNA.

Skoruppa E, Nomidis SK, Marko JF, Carlon E.

Phys Rev Lett. 2018 Aug 24;121(8):088101. doi: 10.1103/PhysRevLett.121.088101.

14.

Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold.

Sun M, Biggs R, Hornick J, Marko JF.

Chromosome Res. 2018 Dec;26(4):277-295. doi: 10.1007/s10577-018-9584-1. Epub 2018 Aug 24.

15.

Effects of electrostatic interactions on ligand dissociation kinetics.

Erbaş A, de la Cruz MO, Marko JF.

Phys Rev E. 2018 Feb;97(2-1):022405. doi: 10.1103/PhysRevE.97.022405.

16.

Defect-facilitated buckling in supercoiled double-helix DNA.

Brahmachari S, Dittmore A, Takagi Y, Neuman KC, Marko JF.

Phys Rev E. 2018 Feb;97(2-1):022416. doi: 10.1103/PhysRevE.97.022416.

17.

Separate roles for chromatin and lamins in nuclear mechanics.

Stephens AD, Banigan EJ, Marko JF.

Nucleus. 2018 Jan 1;9(1):119-124. doi: 10.1080/19491034.2017.1414118. Epub 2017 Dec 28.

18.

Nucleation of Multiple Buckled Structures in Intertwined DNA Double Helices.

Brahmachari S, Gunn KH, Giuntoli RD, Mondragón A, Marko JF.

Phys Rev Lett. 2017 Nov 3;119(18):188103. doi: 10.1103/PhysRevLett.119.188103. Epub 2017 Oct 31.

19.

Single-Molecule Magnetic Tweezer Analysis of Topoisomerases.

Gunn KH, Marko JF, Mondragón A.

Methods Mol Biol. 2018;1703:139-152. doi: 10.1007/978-1-4939-7459-7_10.

20.

Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins.

Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V, Adam SA, Goldman RD, Marko JF.

Mol Biol Cell. 2018 Jan 15;29(2):220-233. doi: 10.1091/mbc.E17-06-0410. Epub 2017 Nov 15.

Supplemental Content

Loading ...
Support Center