Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 38

1.

Comparative biochemical and structural analysis of the flavin-binding dodecins from Streptomyces davaonensis and Streptomyces coelicolor reveals striking differences with regard to multimerization.

Bourdeaux F, Ludwig P, Paithankar K, Sander B, Essen LO, Grininger M, Mack M.

Microbiology. 2019 Jul 24. doi: 10.1099/mic.0.000835. [Epub ahead of print]

PMID:
31339487
2.

Formation of 3-hydroxyglutaric acid in glutaric aciduria type I: in vitro participation of medium chain acyl-CoA dehydrogenase.

Peters V, Morath M, Mack M, Liesert M, Buckel W, Hoffmann GF, Vockley J, Ghisla S, Zschocke J.

JIMD Rep. 2019 Mar 26;47(1):30-34. doi: 10.1002/jmd2.12026. eCollection 2019 May.

3.

Microbial cell factories for the sustainable manufacturing of B vitamins.

Acevedo-Rocha CG, Gronenberg LS, Mack M, Commichau FM, Genee HJ.

Curr Opin Biotechnol. 2019 Apr;56:18-29. doi: 10.1016/j.copbio.2018.07.006. Epub 2018 Aug 20. Review.

4.

Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis.

Ludwig P, Sévin DC, Busche T, Kalinowski J, Bourdeaux F, Grininger M, Mack M.

Microbiology. 2018 Jun;164(6):908-919. doi: 10.1099/mic.0.000662.

PMID:
29856311
5.

Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.

Jung T, Mack M.

FEMS Microbiol Lett. 2018 Apr 1;365(8). doi: 10.1093/femsle/fny055.

PMID:
29546354
6.

Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov.

Landwehr W, Kämpfer P, Glaeser SP, Rückert C, Kalinowski J, Blom J, Goesmann A, Mack M, Schumann P, Atasayar E, Hahnke RL, Rohde M, Martin K, Stadler M, Wink J.

Int J Syst Evol Microbiol. 2018 Jan;68(1):382-393. doi: 10.1099/ijsem.0.002519. Epub 2017 Dec 11.

PMID:
29227220
7.

Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.

Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T, McCurry MD, Murgolo N, Flattery A, Mack M, Roemer T.

Cell Chem Biol. 2017 May 18;24(5):576-588.e6. doi: 10.1016/j.chembiol.2017.03.014. Epub 2017 Apr 20.

8.

Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals.

von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R.

J Lipid Res. 2017 Jun;58(6):1247-1258. doi: 10.1194/jlr.D076190. Epub 2017 Apr 3.

9.

The Crystal Structure of RosB: Insights into the Reaction Mechanism of the First Member of a Family of Flavodoxin-like Enzymes.

Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M.

Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1146-1151. doi: 10.1002/anie.201610292. Epub 2016 Dec 16.

PMID:
27981706
10.

Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.

Matern A, Pedrolli D, Großhennig S, Johansson J, Mack M.

J Bacteriol. 2016 Nov 4;198(23):3233-3243. Print 2016 Dec 1.

11.

Identification of the Key Enzyme of Roseoflavin Biosynthesis.

Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M.

Angew Chem Int Ed Engl. 2016 May 10;55(20):6103-6. doi: 10.1002/anie.201600581. Epub 2016 Apr 9.

PMID:
27062037
12.

Structural and kinetic studies on RosA, the enzyme catalysing the methylation of 8-demethyl-8-amino-d-riboflavin to the antibiotic roseoflavin.

Tongsook C, Uhl MK, Jankowitsch F, Mack M, Gruber K, Macheroux P.

FEBS J. 2016 Apr;283(8):1531-49. doi: 10.1111/febs.13690. Epub 2016 Mar 17.

13.

A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.

Pedrolli DB, Kühm C, Sévin DC, Vockenhuber MP, Sauer U, Suess B, Mack M.

Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):14054-9. doi: 10.1073/pnas.1515024112. Epub 2015 Oct 22.

14.

Thermodynamic and Probabilistic Metabolic Control Analysis of Riboflavin (Vitamin B₂) Biosynthesis in Bacteria.

Birkenmeier M, Mack M, Röder T.

Appl Biochem Biotechnol. 2015 Oct;177(3):732-52. doi: 10.1007/s12010-015-1776-y. Epub 2015 Aug 18.

PMID:
26280801
15.

The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.

Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M.

FEBS J. 2015 Aug;282(16):3230-42. doi: 10.1111/febs.13226. Epub 2015 Feb 27.

16.

Erratum to: A coupled thermodynamic and metabolic control analysis methodology and its evaluation on glycerol biosynthesis in Saccharomyces cerevisiae.

Birkenmeier M, Mack M, Röder T.

Biotechnol Lett. 2015 Feb;37(2):317-26. doi: 10.1007/s10529-014-1696-x.

PMID:
25351807
17.

A coupled thermodynamic and metabolic control analysis methodology and its evaluation on glycerol biosynthesis in Saccharomyces cerevisiae.

Birkenmeier M, Mack M, Röder T.

Biotechnol Lett. 2015 Feb;37(2):307-16. doi: 10.1007/s10529-014-1675-2. Epub 2014 Sep 26. Erratum in: Biotechnol Lett. 2015 Feb;37(2):317-26.

PMID:
25257590
18.

Natural riboflavin analogs.

Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M.

Methods Mol Biol. 2014;1146:41-63. doi: 10.1007/978-1-4939-0452-5_3. Review.

PMID:
24764087
19.

Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.

Pedrolli DB, Mack M.

Methods Mol Biol. 2014;1103:165-76. doi: 10.1007/978-1-62703-730-3_13.

PMID:
24318894
20.

Bacteriophage T7 RNA polymerase-based expression in Pichia pastoris.

Hobl B, Hock B, Schneck S, Fischer R, Mack M.

Protein Expr Purif. 2013 Nov;92(1):100-4. doi: 10.1016/j.pep.2013.09.004. Epub 2013 Sep 19.

PMID:
24056257

Supplemental Content

Loading ...
Support Center