Format

Send to

Choose Destination
Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:1745-8. doi: 10.1109/EMBC.2015.7318715.

Biofunctionalization of polymeric surfaces.

Abstract

Most of the synthetic polymeric biomaterials used for biomedical applications lack of functional groups able to specifically instruct cells to unlock their potential for tissue regeneration. Surface modification strategies are able to overcome this limitation by introducing bioactive cues. In this study, several functionalization approaches are analyzed. Wet chemical methods such as controlled hydrolysis of polyesters followed by biomolecules grafting by carbodiimide chemistry are simple and versatile approaches, able to succesfully improve the bioactivity of devices with virtually any architecture. Grafting of short peptides, extracellular matrix proteins (ECM) or engineered protein-like recombinamers are promising techniques to improve cell adhesion to biomaterials, including polylactic acid (PLA) and its derivatives. ECM molecules and recombinamers can present more effectively bioactive signals, even in presence of competing, nonadhesive serum proteins. Besides adhesion, surface modifications intended to improve cell attachment, play a role on other cell responses, such as migratory potential. Collagen coating were shown to enhance the expression of the migratory receptor CXCR4 in mesenchymal stromal cells, when compared to short RGD peptides, while the modality of functionalization (covalent vs. physisorbed) tuned the rate of cell migration from PLA-based microcarriers. This multiple effects have to be taken into account when designing biomaterials for cell delivery and tissue engineering. Furthermore, as we aim to recapitulate in vitro the complexity of native tissues, alternative strategies based on the generation of decellularized polymer scaffold rich in cell-deposited ECM are proposed.

PMID:
26736615
DOI:
10.1109/EMBC.2015.7318715
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center