Format
Sort by
Items per page

Send to

Choose Destination

Best matches for in vivo reprogramming neuron:

In vivo reprogramming for tissue repair. Heinrich C et al. Nat Cell Biol. (2015)

Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Wang LL et al. Cell Tissue Res. (2018)

In Vivo Reprogramming for Brain and Spinal Cord Repair. Chen G et al. eNeuro. (2015)

Search results

Items: 1 to 20 of 212

1.

Direct Neuronal Reprogramming Reveals Unknown Functions for Known Transcription Factors.

Colasante G, Rubio A, Massimino L, Broccoli V.

Front Neurosci. 2019 Mar 26;13:283. doi: 10.3389/fnins.2019.00283. eCollection 2019. Review.

2.

A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in neuroblastoma.

van Groningen T, Akogul N, Westerhout EM, Chan A, Hasselt NE, Zwijnenburg DA, Broekmans M, Stroeken P, Haneveld F, Hooijer GKJ, Savci-Heijink CD, Lakeman A, Volckmann R, van Sluis P, Valentijn LJ, Koster J, Versteeg R, van Nes J.

Nat Commun. 2019 Apr 4;10(1):1530. doi: 10.1038/s41467-019-09470-w.

3.

Melanoma-Induced Reprogramming of Schwann Cell Signaling Aids Tumor Growth.

Shurin GV, Kruglov O, Ding F, Lin Y, Hao X, Keskinov AA, You Z, Lokshin AE, LaFramboise WA, Falo LD Jr, Shurin MR, Bunimovich YL.

Cancer Res. 2019 May 15;79(10):2736-2747. doi: 10.1158/0008-5472.CAN-18-3872. Epub 2019 Mar 26.

PMID:
30914431
4.

Non-engineered and Engineered Adult Neurogenesis in Mammalian Brains.

Lei W, Li W, Ge L, Chen G.

Front Neurosci. 2019 Feb 21;13:131. doi: 10.3389/fnins.2019.00131. eCollection 2019. Review.

5.

In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease.

Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, Yoo J, Kim J, Jun W, Lee M, Lengner CJ, Oh YK, Kim J.

Nat Neurosci. 2019 Apr;22(4):524-528. doi: 10.1038/s41593-019-0352-0. Epub 2019 Mar 11.

PMID:
30858603
6.

Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways.

Yin JC, Zhang L, Ma NX, Wang Y, Lee G, Hou XY, Lei ZF, Zhang FY, Dong FP, Wu GY, Chen G.

Stem Cell Reports. 2019 Mar 5;12(3):488-501. doi: 10.1016/j.stemcr.2019.01.003. Epub 2019 Feb 7.

7.

Making NSC and Neurons from Patient-Derived Tissue Samples.

Mukherjee O, Acharya S, Rao M.

Methods Mol Biol. 2019;1919:9-24. doi: 10.1007/978-1-4939-9007-8_2.

PMID:
30656618
8.

Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion.

Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuin AMD, Miura F, Ito T, Kimura H, Shirahige K, Takeda T, Iwasaki K, Imamura T, Nakashima K.

Neuron. 2019 Feb 6;101(3):472-485.e7. doi: 10.1016/j.neuron.2018.12.010. Epub 2019 Jan 9.

PMID:
30638745
9.

Novel Direct Conversion of Microglia to Neurons.

Trudler D, Lipton SA.

Trends Mol Med. 2019 Feb;25(2):72-74. doi: 10.1016/j.molmed.2018.12.005. Epub 2019 Jan 2.

10.

β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming.

Xie X, Jankauskas R, Mazari AMA, Drou N, Percipalle P.

PLoS Genet. 2018 Dec 17;14(12):e1007846. doi: 10.1371/journal.pgen.1007846. eCollection 2018 Dec.

11.

Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology.

Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM.

Front Bioeng Biotechnol. 2018 Nov 21;6:173. doi: 10.3389/fbioe.2018.00173. eCollection 2018.

12.

Reversibility of irreversible aging.

Galkin F, Zhang B, Dmitriev SE, Gladyshev VN.

Ageing Res Rev. 2019 Jan;49:104-114. doi: 10.1016/j.arr.2018.11.008. Epub 2018 Dec 1. Review.

PMID:
30513346
13.

Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2.

Guimarães RPM, Landeira BS, Coelho DM, Golbert DCF, Silveira MS, Linden R, de Melo Reis RA, Costa MR.

Front Cell Neurosci. 2018 Nov 12;12:410. doi: 10.3389/fncel.2018.00410. eCollection 2018.

14.

Regenerative Approaches in Huntington's Disease: From Mechanistic Insights to Therapeutic Protocols.

Sassone J, Papadimitriou E, Thomaidou D.

Front Neurosci. 2018 Nov 2;12:800. doi: 10.3389/fnins.2018.00800. eCollection 2018. Review.

15.

MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans.

Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, Beato Del Rosal ML, Herzog S, Ul Fatima N, Mertins P, Seelk-Müthel S, Tursun B.

Genetics. 2019 Jan;211(1):121-139. doi: 10.1534/genetics.118.301674. Epub 2018 Nov 13.

16.

The N terminus of Ascl1 underlies differing proneural activity of mouse and Xenopus Ascl1 proteins.

Hardwick LJA, Philpott A.

Wellcome Open Res. 2018 Sep 26;3:125. doi: 10.12688/wellcomeopenres.14842.1. eCollection 2018.

17.

Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain.

Niu W, Zang T, Wang LL, Zou Y, Zhang CL.

Stem Cell Reports. 2018 Nov 13;11(5):1156-1170. doi: 10.1016/j.stemcr.2018.09.004. Epub 2018 Oct 11.

18.

In vivo conversion of astrocytes to oligodendrocyte lineage cells using chemicals: targeting gliosis for myelin repair.

Zare L, Baharvand H, Javan M.

Regen Med. 2018 Oct;13(7):803-819. doi: 10.2217/rme-2017-0155. Epub 2018 Oct 4.

PMID:
30284949
19.

A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis.

García-Aguilar A, Cuezva JM.

Front Physiol. 2018 Sep 19;9:1322. doi: 10.3389/fphys.2018.01322. eCollection 2018. Review.

20.

Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage.

Yang G, Hong H, Torres A, Malloy KE, Choudhury GR, Kim J, Daadi MM.

Int J Mol Sci. 2018 Sep 17;19(9). pii: E2788. doi: 10.3390/ijms19092788.

Supplemental Content

Loading ...
Support Center