Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 1069

1.

The Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of Honey Bee during Larvae Reared in Vitro.

Dai P, Yan Z, Ma S, Yang Y, Wang Q, Hou C, Wu Y, Liu Y, Diao Q.

J Agric Food Chem. 2018 Jul 25;66(29):7786-7793. doi: 10.1021/acs.jafc.8b02212. Epub 2018 Jul 11.

PMID:
29992812
2.

Cross-species systems analysis of evolutionary toolkits of neurogenomic response to social challenge.

Saul MC, Blatti C, Yang W, Bukhari SA, Shpigler HY, Troy JM, Seward CH, Sloofman L, Chandrasekaran S, Bell AM, Stubbs L, Robinson GE, Zhao SD, Sinha S.

Genes Brain Behav. 2018 Jul 2:e12502. doi: 10.1111/gbb.12502. [Epub ahead of print]

PMID:
29968347
3.

Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior.

Paris L, El Alaoui H, Delbac F, Diogon M.

Curr Opin Insect Sci. 2018 Apr;26:149-154. doi: 10.1016/j.cois.2018.02.017. Epub 2018 Mar 2. Review.

PMID:
29764655
4.

Genetics and physiology of Varroa mites.

Evans JD, Cook SC.

Curr Opin Insect Sci. 2018 Apr;26:130-135. doi: 10.1016/j.cois.2018.02.005. Epub 2018 Feb 8. Review.

PMID:
29764652
6.

Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers.

McFrederick QS, Vuong HQ, Rothman JA.

Int J Syst Evol Microbiol. 2018 Jun;68(6):1879-1884. doi: 10.1099/ijsem.0.002758. Epub 2018 Apr 12.

PMID:
29648528
7.

Nosema ceranae in Apis mellifera: a 12 years postdetection perspective.

Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M.

Environ Microbiol. 2018 Apr;20(4):1302-1329. doi: 10.1111/1462-2920.14103. Review.

PMID:
29575513
8.

Comparative antennal transcriptome of Apis cerana cerana from four developmental stages.

Zhao H, Peng Z, Du Y, Xu K, Guo L, Yang S, Ma W, Jiang Y.

Gene. 2018 Jun 20;660:102-108. doi: 10.1016/j.gene.2018.03.068. Epub 2018 Mar 21.

PMID:
29574189
9.

Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities.

Yao J, Zhu YC, Adamczyk J, Luttrell R.

Comp Biochem Physiol C Toxicol Pharmacol. 2018 Jul;209:9-17. doi: 10.1016/j.cbpc.2018.03.005. Epub 2018 Mar 18.

PMID:
29563044
10.

Effects of truck-mounted, ultra low volume mosquito adulticides on honey bees (Apis mellifera) in a suburban field setting.

Pokhrel V, DeLisi NA, Danka RG, Walker TW, Ottea JA, Healy KB.

PLoS One. 2018 Mar 1;13(3):e0193535. doi: 10.1371/journal.pone.0193535. eCollection 2018.

11.

A novel TaqMan® assay for Nosema ceranae quantification in honey bee, based on the protein coding gene Hsp70.

Cilia G, Cabbri R, Maiorana G, Cardaio I, Dall'Olio R, Nanetti A.

Eur J Protistol. 2018 Apr;63:44-50. doi: 10.1016/j.ejop.2018.01.007. Epub 2018 Feb 6.

PMID:
29459253
12.

Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.

Simone-Finstrom M, Aronstein K, Goblirsch M, Rinkevich F, de Guzman L.

J Invertebr Pathol. 2018 Mar;153:57-64. doi: 10.1016/j.jip.2018.02.011. Epub 2018 Feb 15.

PMID:
29453966
13.

Successful reproduction of unmated Tropilaelaps mercedesae and its implication on mite population growth in Apis mellifera colonies.

de Guzman LI, Phokasem P, Khongphinitbunjong K, Frake AM, Chantawannakul P.

J Invertebr Pathol. 2018 Mar;153:35-37. doi: 10.1016/j.jip.2018.02.010. Epub 2018 Feb 13.

PMID:
29452084
14.

Varroa destructor parasitism reduces hemocyte concentrations and prophenol oxidase gene expression in bees from two populations.

Koleoglu G, Goodwin PH, Reyes-Quintana M, Hamiduzzaman MM, Guzman-Novoa E.

Parasitol Res. 2018 Apr;117(4):1175-1183. doi: 10.1007/s00436-018-5796-8. Epub 2018 Feb 12.

15.

Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera.

Langberg K, Phillips M, Rueppell O.

Genetica. 2018 Apr;146(2):171-178. doi: 10.1007/s10709-018-0009-z. Epub 2018 Feb 3.

PMID:
29397499
16.

A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia.

Syromyatnikov MY, Borodachev AV, Kokina AV, Popov VN.

Insects. 2018 Jan 27;9(1). pii: E10. doi: 10.3390/insects9010010.

17.

Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain.

Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C.

Open Biol. 2018 Jan;8(1). pii: 170224. doi: 10.1098/rsob.170224.

18.

Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees.

Xu G, Palmer-Young E, Skyrm K, Daly T, Sylvia M, Averill A, Rich S.

Parasitol Res. 2018 Feb;117(2):623-628. doi: 10.1007/s00436-017-5733-2. Epub 2017 Dec 27.

PMID:
29282526
19.

Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

Techer MA, Clémencet J, Simiand C, Turpin P, Garnery L, Reynaud B, Delatte H.

PLoS One. 2017 Dec 27;12(12):e0189234. doi: 10.1371/journal.pone.0189234. eCollection 2017.

20.

A real-time PCR method for quantification of the total and major variant strains of the deformed wing virus.

Bradford EL, Christie CR, Campbell EM, Bowman AS.

PLoS One. 2017 Dec 19;12(12):e0190017. doi: 10.1371/journal.pone.0190017. eCollection 2017.

Supplemental Content

Loading ...
Support Center