Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 34

1.

Keel bone damage assessment: consistency in enriched colony laying hens.

Chargo NJ, Robison CI, Baker SL, Toscano MJ, Makagon MM, Karcher DM.

Poult Sci. 2019 Feb 1;98(2):1017-1022. doi: 10.3382/ps/pey373.

PMID:
30165387
2.

In Vivo Characterization of Cortical Bone Using Guided Waves Measured by Axial Transmission.

Vallet Q, Bochud N, Chappard C, Laugier P, Minonzio JG.

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1361-1371. doi: 10.1109/TUFFC.2016.2587079. Epub 2016 Jul 7.

PMID:
27392349
3.

Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures.

Styrkarsdottir U, Thorleifsson G, Gudjonsson SA, Sigurdsson A, Center JR, Lee SH, Nguyen TV, Kwok TCY, Lee JSW, Ho SC, Woo J, Leung PC, Kim BJ, Rafnar T, Kiemeney LA, Ingvarsson T, Koh JM, Tang NLS, Eisman JA, Christiansen C, Sigurdsson G, Thorsteinsdottir U, Stefansson K.

Nat Commun. 2016 Jan 6;7:10129. doi: 10.1038/ncomms10129.

4.

Characterization of damage mechanisms associated with reference point indentation in human bone.

Beutel BG, Kennedy OD.

Bone. 2015 Jun;75:1-7. doi: 10.1016/j.bone.2015.01.019. Epub 2015 Feb 7.

PMID:
25659950
5.

Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.

Dencks S, Schmitz G.

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Sep;60(9):1884-95. doi: 10.1109/TUFFC.2013.2773.

PMID:
24658719
6.

Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.

Rohde K, Rohrbach D, Glüer CC, Laugier P, Grimal Q, Raum K, Barkmann R.

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):302-13. doi: 10.1109/TUFFC.2014.6722615.

PMID:
24474136
7.

Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.

Duryea AP, Roberts WW, Cain CA, Hall TL.

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):301-9. doi: 10.1109/TUFFC.2013.2566.

8.

Oscillation characteristics of endodontic files: numerical model and its validation.

Verhaagen B, Lea SC, de Bruin GJ, van der Sluis LW, Walmsley AD, Versluis M.

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Nov;59(11):2448-59. doi: 10.1109/TUFFC.2012.2477.

PMID:
23192808
9.

Impact reduction during running: efficiency of simple acute interventions in recreational runners.

Giandolini M, Arnal PJ, Millet GY, Peyrot N, Samozino P, Dubois B, Morin JB.

Eur J Appl Physiol. 2013 Mar;113(3):599-609. doi: 10.1007/s00421-012-2465-y. Epub 2012 Aug 9.

PMID:
22875194
10.

Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate.

Wang H, Wereszczak AA.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Dec;55(12):2559-70. doi: 10.1109/TUFFC.2008.972.

PMID:
19126481
11.

Mechanisms for attenuation in cancellous-bone-mimicking phantoms.

Wear KA.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Nov;55(11):2418-25. doi: 10.1109/TUFFC.949.

PMID:
19049921
12.

The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis.

Hans D, Krieg MA.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jul;55(7):1529-38. doi: 10.1109/TUFFC.2008.829. Review.

PMID:
18986943
13.

A new quality of bone ultrasound research.

Gluer CC.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jul;55(7):1524-8. doi: 10.1109/TUFFC.2008.828. Review.

PMID:
18986942
14.

A method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements.

Wear KA.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jul;55(7):1473-9. doi: 10.1109/TUFFC.2008.822.

PMID:
18986936
15.

Model-based estimation of quantitative ultrasound variables at the proximal femur.

Dencks S, Barkmann R, Padilla F, Laugier P, Schmitz G, Glüer CC.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1304-15. doi: 10.1109/TUFFC.2008.793.

PMID:
18599418
16.

Ultrasonic guided waves in bone.

Moilanen P.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1277-86. doi: 10.1109/TUFFC.2008.790.

PMID:
18599415
17.

Ultrasonic monitoring of bone fracture healing.

Protopappas VC, Vavva MG, Fotiadis DI, Malizos KN.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1243-55. doi: 10.1109/TUFFC.2008.787. Review.

PMID:
18599412
18.

The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.

Goossens L, Vanderoost J, Jaecques S, Boonen S, D'hooge J, Lauriks W, Van der Perre G.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1234-42. doi: 10.1109/TUFFC.2008.786.

PMID:
18599411
19.

Ultrasound simulation in bone.

Kaufman JJ, Luo G, Siffert RS.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1205-18. doi: 10.1109/TUFFC.2008.784. Review.

PMID:
18599409
20.

A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur.

Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, Haïat G, Glüer CC.

IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1197-204. doi: 10.1109/TUFFC.2008.783.

PMID:
18599408

Supplemental Content

Loading ...
Support Center