Format

Send to

Choose Destination
Bone. 2009 Nov;45(5):994-1003. doi: 10.1016/j.bone.2009.07.018. Epub 2009 Jul 23.

Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling.

Author information

1
Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Abstract

Fibroblast growth factor 2 (FGF2), the potent bone anabolic agent, regulates the bone development, as well as the growth, remodeling and healing of the fracture. The intracellular signaling of FGF2 leads to activation of genes involved in cell proliferation, migration, differentiation and survival. However, little is known about FGF2-regulated proteins in the osteoblasts. Therefore, in this study, protein profiling in FGF2-treated MC3T3-E1 preosteoblast cells was evaluated using proteomic technologies. Six proteins including asparaginyl-tRNA synthetase (NARS), eukaryotic translation termination factor 1 (ETF1), GDP-forming succinyl-CoA synthetase (SUCLG2), heat shock protein 84 (HSP 84), sorting nexin 9 (SNX9) and alpha glucosidase 2alpha neutral subunit (GANAB) were increased more than 3-fold after the FGF2 treatment. Also, two proteins including beta-tropomyosin and tropomyosin 2 were decreased to 2-folds. Among these proteins, asparaginyl-tRNA synthetase (NARS), a member of aminoacyl-tRNA synthetases (AARS), was strikingly up-regulated more than 900-fold. The overexpression of NARS significantly increased the proliferation of both the MC3T3-E1 and the primary mouse calvarial cells. In contrast, significant reduction of the basal expression of NARS by siNARS remarkably suppressed the proliferation and induced the death of cell. After the siNARS treatment, the resistance to apoptosis induced by serum deprivation was also significantly reduced. The level of p-Akt was also reduced and the activity of caspase 3 significantly enhanced. In addition, NARS-induced protection against apoptosis was abolished by the treatment of PI3K inhibitors, wortmannin and LY294002. In conclusion, we suggest that NARS is one of the important mediators of FGF2 induced survival signaling in osteoblasts through the activation of PI3K/Akt survival pathway.

PMID:
19631775
DOI:
10.1016/j.bone.2009.07.018
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center