Send to

Choose Destination
Theochem. 2010 Apr 15;945(1-3):57-63.

Computational Study on the Conformations of Mitragynine and Mitragynaline.

Author information

Department of Medicinal Chemistry, University of Mississippi, MS, 38677-1848, USA.


A conformational search on mitragynine and mitragynaline, natural products isolated from the leaves of Mitragyna speciosa, was performed using the MMFF94s force field and the quantum mechanical B3LYP method. The main difference for the mitragynine conformers is caused by the position of the lone pair of the nitrogen shared by rings 3 and 4. Specifically, the lone pair can be syn or anti to the exocylic ethyl group on ring 4. Syn was found to be lower in energy than anti, because of less steric hindrance between the ethyl and the methylene group adjacent to the N in ring 3. The geometrical parameters for the lowest energy conformer of mitragynine are in excellent agreement with the published X-ray crystal structure's geometry. Because it has one more double bond, mitragynaline has less conformational freedom than mitragynine. The main possible conformational choice in mitragynaline is for orientational flexibility of a C-C single bond in ring 3. The finding of two low energy conformers of mitragynaline differing in ring 3 conformation matches reported X-ray crystal structural data.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center