Format

Send to

Choose Destination
Sci Rep. 2017 Apr 10;7(1):783. doi: 10.1038/s41598-017-00958-3.

Human PrimPol activity is enhanced by RPA.

Author information

1
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), c/Nicolás Cabrera 1, 28049, Cantoblanco, Madrid, Spain.
2
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), c/Nicolás Cabrera 1, 28049, Cantoblanco, Madrid, Spain. lblanco@cbm.csic.es.

Abstract

Human PrimPol is a primase belonging to the AEP superfamily with the unique ability to synthesize DNA primers de novo, and a non-processive DNA polymerase able to bypass certain DNA lesions. PrimPol facilitates both mitochondrial and nuclear replication fork progression either acting as a conventional TLS polymerase, or repriming downstream of blocking lesions. In vivo assays have shown that PrimPol is rapidly recruited to sites of DNA damage by interaction with the human replication protein A (RPA). In agreement with previous findings, we show here that the higher affinity of RPA for ssDNA inhibits PrimPol activities in short ssDNA templates. In contrast, once the amount of ssDNA increases up to a length in which both proteins can simultaneously bind ssDNA, as expected during replicative stress conditions, PrimPol and RPA functionally interact, and their binding capacities are mutually enhanced. When using M13 ssDNA as template, RPA stimulated both the primase and polymerase activities of PrimPol, either alone or in synergy with Polε. These new findings supports the existence of a functional PrimPol/RPA association that allows repriming at the exposed ssDNA regions formed in the leading strand upon replicase stalling.

PMID:
28396594
PMCID:
PMC5429719
DOI:
10.1038/s41598-017-00958-3
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center