Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 26

1.

The Nucleolus as a Proteostasis Regulator.

Amer-Sarsour F, Ashkenazi A.

Trends Cell Biol. 2019 Nov;29(11):849-851. doi: 10.1016/j.tcb.2019.08.002. Epub 2019 Aug 28.

PMID:
31473054
2.

Ubiquitin Signaling and Degradation of Aggregate-Prone Proteins.

Galves M, Rathi R, Prag G, Ashkenazi A.

Trends Biochem Sci. 2019 Oct;44(10):872-884. doi: 10.1016/j.tibs.2019.04.007. Epub 2019 May 9. Review.

PMID:
31079890
3.

The Cell-Death-Associated Polymer PAR Feeds Forward α-Synuclein Toxicity in Parkinson's Disease.

Donyo M, Ashkenazi A.

Mol Cell. 2019 Jan 3;73(1):5-6. doi: 10.1016/j.molcel.2018.12.011.

PMID:
30609391
4.

Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis.

Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Füllgrabe J, Ashkenazi A, Frake RA, Lombarte AC, Bento CF, Franze K, Rubinsztein DC.

Nat Commun. 2018 Jul 27;9(1):2961. doi: 10.1038/s41467-018-05388-x.

5.

Transbilayer phospholipid movement facilitates the translocation of annexin across membranes.

Stewart SE, Ashkenazi A, Williamson A, Rubinsztein DC, Moreau K.

J Cell Sci. 2018 Jul 19;131(14). pii: jcs217034. doi: 10.1242/jcs.217034.

6.

The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A.

Puri C, Vicinanza M, Ashkenazi A, Gratian MJ, Zhang Q, Bento CF, Renna M, Menzies FM, Rubinsztein DC.

Dev Cell. 2018 Apr 9;45(1):114-131.e8. doi: 10.1016/j.devcel.2018.03.008.

7.

Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

Ejlerskov P, Ashkenazi A, Rubinsztein DC.

Neurobiol Dis. 2019 Feb;122:3-8. doi: 10.1016/j.nbd.2018.04.001. Epub 2018 Apr 3. Review.

PMID:
29625255
8.

Polyglutamine tracts regulate autophagy.

Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM, Rubinsztein DC.

Autophagy. 2017 Sep 2;13(9):1613-1614. doi: 10.1080/15548627.2017.1336278. Epub 2017 Jul 19.

9.

Polyglutamine tracts regulate beclin 1-dependent autophagy.

Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM, Rubinsztein DC.

Nature. 2017 May 4;545(7652):108-111. doi: 10.1038/nature22078. Epub 2017 Apr 26.

10.

Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.

Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC.

Neuron. 2017 Mar 8;93(5):1015-1034. doi: 10.1016/j.neuron.2017.01.022. Review.

11.

The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC.

Nat Commun. 2016 Jun 9;7:11803. doi: 10.1038/ncomms11803.

12.

Mammalian Autophagy: How Does It Work?

Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC.

Annu Rev Biochem. 2016 Jun 2;85:685-713. doi: 10.1146/annurev-biochem-060815-014556. Epub 2016 Feb 8. Review.

PMID:
26865532
13.

PI(5)P regulates autophagosome biogenesis.

Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM, Clarke JH, Rubinsztein DC.

Mol Cell. 2015 Jan 22;57(2):219-34. doi: 10.1016/j.molcel.2014.12.007. Epub 2015 Jan 8.

14.

Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

Klug YA, Ashkenazi A, Viard M, Porat Z, Blumenthal R, Shai Y.

Biochem J. 2014 Jul 15;461(2):213-22. doi: 10.1042/BJ20140189.

15.

An immunomodulating motif of the HIV-1 fusion protein is chirality-independent: implications for its mode of action.

Faingold O, Ashkenazi A, Kaushansky N, Ben-Nun A, Shai Y.

J Biol Chem. 2013 Nov 15;288(46):32852-60. doi: 10.1074/jbc.M113.512038. Epub 2013 Sep 27.

16.

Peptide interaction with and insertion into membranes.

Saar-Dover R, Ashkenazi A, Shai Y.

Methods Mol Biol. 2013;1033:173-83. doi: 10.1007/978-1-62703-487-6_12.

PMID:
23996178
17.

Structural and functional properties of the membranotropic HIV-1 glycoprotein gp41 loop region are modulated by its intrinsic hydrophobic core.

Qiu J, Ashkenazi A, Liu S, Shai Y.

J Biol Chem. 2013 Oct 4;288(40):29143-50. doi: 10.1074/jbc.M113.496646. Epub 2013 Aug 19.

18.

HIV-1 fusion protein exerts complex immunosuppressive effects.

Ashkenazi A, Faingold O, Shai Y.

Trends Biochem Sci. 2013 Jul;38(7):345-9. doi: 10.1016/j.tibs.2013.04.003. Epub 2013 May 17. Review.

PMID:
23685134
19.

A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice.

Ashkenazi A, Faingold O, Kaushansky N, Ben-Nun A, Shai Y.

Blood. 2013 Mar 21;121(12):2244-52. doi: 10.1182/blood-2012-11-468900. Epub 2013 Jan 16.

PMID:
23325839
20.

Intramolecular interactions within the human immunodeficiency virus-1 gp41 loop region and their involvement in lipid merging.

Ashkenazi A, Merklinger E, Shai Y.

Biochemistry. 2012 Sep 4;51(35):6981-9. doi: 10.1021/bi300868f. Epub 2012 Aug 23.

PMID:
22894130

Supplemental Content

Loading ...
Support Center