Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 97

1.

A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity.

Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, Fineran PC.

Nat Microbiol. 2019 Dec 9. doi: 10.1038/s41564-019-0612-5. [Epub ahead of print]

PMID:
31819217
2.

The interaction of phages and bacteria: the co-evolutionary arms race.

Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y.

Crit Rev Biotechnol. 2019 Dec 2:1-19. doi: 10.1080/07388551.2019.1674774. [Epub ahead of print]

PMID:
31793351
3.

AcrIIA5 Inhibits a Broad Range of Cas9 Orthologs by Preventing DNA Target Cleavage.

Song G, Zhang F, Zhang X, Gao X, Zhu X, Fan D, Tian Y.

Cell Rep. 2019 Nov 26;29(9):2579-2589.e4. doi: 10.1016/j.celrep.2019.10.078.

4.

Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing.

Garcia B, Lee J, Edraki A, Hidalgo-Reyes Y, Erwood S, Mir A, Trost CN, Seroussi U, Stanley SY, Cohn RD, Claycomb JM, Sontheimer EJ, Maxwell KL, Davidson AR.

Cell Rep. 2019 Nov 12;29(7):1739-1746.e5. doi: 10.1016/j.celrep.2019.10.017.

5.

Anti-anti-CRISPR.

Tang L.

Nat Methods. 2019 Nov;16(11):1080. doi: 10.1038/s41592-019-0646-x. No abstract available.

PMID:
31673149
6.

Making the cut(s): how Cas12a cleaves target and non-target DNA.

Swarts DC.

Biochem Soc Trans. 2019 Oct 31;47(5):1499-1510. doi: 10.1042/BST20190564.

PMID:
31671185
7.

Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.

Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y.

Mol Cell. 2019 Oct 22. pii: S1097-2765(19)30730-0. doi: 10.1016/j.molcel.2019.09.025. [Epub ahead of print]

PMID:
31668930
8.

Cas9 Allosteric Inhibition by the Anti-CRISPR Protein AcrIIA6.

Fuchsbauer O, Swuec P, Zimberger C, Amigues B, Levesque S, Agudelo D, Duringer A, Chaves-Sanjuan A, Spinelli S, Rousseau GM, Velimirovic M, Bolognesi M, Roussel A, Cambillau C, Moineau S, Doyon Y, Goulet A.

Mol Cell. 2019 Sep 26. pii: S1097-2765(19)30697-5. doi: 10.1016/j.molcel.2019.09.012. [Epub ahead of print]

PMID:
31604602
9.

Ultrasensitive Multi-Species Detection of CRISPR-Cas9 by a Portable Centrifugal Microfluidic Platform.

Phaneuf CR, Seamon KJ, Eckles TP, Sinha A, Schoeniger JS, Harmon B, Meagher RJ, Abhyankar V, Koh CY.

Anal Methods. 2019 Feb 7;11(5):559-565. doi: 10.1039/C8AY02726A. Epub 2019 Jan 3.

PMID:
31565079
10.

Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein.

Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X.

Cell. 2019 Oct 3;179(2):448-458.e11. doi: 10.1016/j.cell.2019.09.003. Epub 2019 Sep 26.

PMID:
31564454
11.

A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus.

Labrie SJ, Mosterd C, Loignon S, Dupuis MÈ, Desjardins P, Rousseau GM, Tremblay DM, Romero DA, Horvath P, Fremaux C, Moineau S.

Sci Rep. 2019 Sep 25;9(1):13816. doi: 10.1038/s41598-019-49975-4.

12.

Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches.

Yin Y, Yang B, Entwistle S.

mSystems. 2019 Sep 10;4(5). pii: e00455-19. doi: 10.1128/mSystems.00455-19.

13.

Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome.

Forsberg KJ, Bhatt IV, Schmidtke DT, Javanmardi K, Dillard KE, Stoddard BL, Finkelstein IJ, Kaiser BK, Malik HS.

Elife. 2019 Sep 10;8. pii: e46540. doi: 10.7554/eLife.46540.

14.

Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription.

Stanley SY, Borges AL, Chen KH, Swaney DL, Krogan NJ, Bondy-Denomy J, Davidson AR.

Cell. 2019 Sep 5;178(6):1452-1464.e13. doi: 10.1016/j.cell.2019.07.046. Epub 2019 Aug 29.

PMID:
31474367
15.

Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4.

Peng R, Li Z, Xu Y, He S, Peng Q, Wu LA, Wu Y, Qi J, Wang P, Shi Y, Gao GF.

Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18928-18936. doi: 10.1073/pnas.1909400116. Epub 2019 Aug 29.

PMID:
31467167
16.

Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins.

Lee J, Mou H, Ibraheim R, Liang SQ, Liu P, Xue W, Sontheimer EJ.

RNA. 2019 Nov;25(11):1421-1431. doi: 10.1261/rna.071704.119. Epub 2019 Aug 22.

PMID:
31439808
17.

The autoregulator Aca2 mediates anti-CRISPR repression.

Birkholz N, Fagerlund RD, Smith LM, Jackson SA, Fineran PC.

Nucleic Acids Res. 2019 Oct 10;47(18):9658-9665. doi: 10.1093/nar/gkz721.

18.

Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a.

Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M, Arkin AP, Fellmann C, Doudna JA.

Elife. 2019 Aug 9;8. pii: e49110. doi: 10.7554/eLife.49110.

19.

Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain.

Kim Y, Lee SJ, Yoon HJ, Kim NK, Lee BJ, Suh JY.

FEBS J. 2019 Dec;286(23):4661-4674. doi: 10.1111/febs.15037. Epub 2019 Aug 17.

PMID:
31389128
20.

Cell-Type-Specific CRISPR Activation with MicroRNA-Responsive AcrllA4 Switch.

Hirosawa M, Fujita Y, Saito H.

ACS Synth Biol. 2019 Jul 19;8(7):1575-1582. doi: 10.1021/acssynbio.9b00073. Epub 2019 Jul 9.

PMID:
31268303

Supplemental Content

Loading ...
Support Center