Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

Specific synaptic input strengths determine the computational properties of excitation-inhibition integration in a sound localization circuit.

Gjoni E, Zenke F, Bouhours B, Schneggenburger R.

J Physiol. 2018 Oct;596(20):4945-4967. doi: 10.1113/JP276012. Epub 2018 Aug 28.

PMID:
30051910
2.

SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

Zenke F, Ganguli S.

Neural Comput. 2018 Jun;30(6):1514-1541. doi: 10.1162/neco_a_01086. Epub 2018 Apr 13.

3.

The temporal paradox of Hebbian learning and homeostatic plasticity.

Zenke F, Gerstner W, Ganguli S.

Curr Opin Neurobiol. 2017 Apr;43:166-176. doi: 10.1016/j.conb.2017.03.015. Epub 2017 Apr 18. Review.

PMID:
28431369
4.

Hebbian plasticity requires compensatory processes on multiple timescales.

Zenke F, Gerstner W.

Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715). pii: 20160259. doi: 10.1098/rstb.2016.0259. Review.

5.

Editorial: Emergent Neural Computation from the Interaction of Different Forms of Plasticity.

Gilson M, Savin C, Zenke F.

Front Comput Neurosci. 2015 Nov 30;9:145. doi: 10.3389/fncom.2015.00145. eCollection 2015. No abstract available.

6.

Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.

Zenke F, Agnes EJ, Gerstner W.

Nat Commun. 2015 Apr 21;6:6922. doi: 10.1038/ncomms7922.

7.

Synaptic consolidation: from synapses to behavioral modeling.

Ziegler L, Zenke F, Kastner DB, Gerstner W.

J Neurosci. 2015 Jan 21;35(3):1319-34. doi: 10.1523/JNEUROSCI.3989-14.2015.

8.

Limits to high-speed simulations of spiking neural networks using general-purpose computers.

Zenke F, Gerstner W.

Front Neuroinform. 2014 Sep 11;8:76. doi: 10.3389/fninf.2014.00076. eCollection 2014.

9.

Inference of neuronal network spike dynamics and topology from calcium imaging data.

L├╝tcke H, Gerhard F, Zenke F, Gerstner W, Helmchen F.

Front Neural Circuits. 2013 Dec 24;7:201. doi: 10.3389/fncir.2013.00201. eCollection 2013.

10.

Synaptic plasticity in neural networks needs homeostasis with a fast rate detector.

Zenke F, Hennequin G, Gerstner W.

PLoS Comput Biol. 2013;9(11):e1003330. doi: 10.1371/journal.pcbi.1003330. Epub 2013 Nov 14.

Supplemental Content

Loading ...
Support Center