Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 137

1.

Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague.

Gibbs ME, Lountos GT, Gumpena R, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2019 Sep 1;75(Pt 9):608-615. doi: 10.1107/S2053230X19011154. Epub 2019 Aug 28.

PMID:
31475928
2.

Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening.

Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS.

Nucleic Acids Res. 2019 Jun 14. pii: gkz515. doi: 10.1093/nar/gkz515. [Epub ahead of print]

PMID:
31199869
3.

The molecular mechanism of dsRNA processing by a bacterial Dicer.

Jin L, Song H, Tropea JE, Needle D, Waugh DS, Gu S, Ji X.

Nucleic Acids Res. 2019 May 21;47(9):4707-4720. doi: 10.1093/nar/gkz208.

4.

Targeting Protein-Protein Interactions of Tyrosine Phosphatases with Microarrayed Fragment Libraries Displayed on Phosphopeptide Substrate Scaffolds.

Hogan M, Bahta M, Tsuji K, Nguyen TX, Cherry S, Lountos GT, Tropea JE, Zhao BM, Zhao XZ, Waugh DS, Burke TR Jr, Ulrich RG.

ACS Comb Sci. 2019 Mar 11;21(3):158-170. doi: 10.1021/acscombsci.8b00122. Epub 2019 Jan 31.

PMID:
30629404
5.

Author Correction: Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen.

Olson MA, Lee MS, Kissner TL, Alam S, Waugh DS, Saikh KU.

Sci Rep. 2018 Nov 19;8(1):17074. doi: 10.1038/s41598-018-35538-6.

6.

High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design.

Lountos GT, Raran-Kurussi S, Zhao BM, Dyas BK, Burke TR Jr, Ulrich RG, Waugh DS.

Acta Crystallogr D Struct Biol. 2018 Oct 1;74(Pt 10):1015-1026. doi: 10.1107/S2059798318011919. Epub 2018 Oct 2.

PMID:
30289412
7.

MBP-binding DARPins facilitate the crystallization of an MBP fusion protein.

Gumpena R, Lountos GT, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2018 Sep 1;74(Pt 9):549-557. doi: 10.1107/S2053230X18009901. Epub 2018 Aug 29.

8.

Crystal structure of the human dual specificity phosphatase 1 catalytic domain.

Gumpena R, Lountos GT, Raran-Kurussi S, Tropea JE, Cherry S, Waugh DS.

Protein Sci. 2018 Feb;27(2):561-567. doi: 10.1002/pro.3328. Epub 2017 Nov 21.

9.

Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

Raran-Kurussi S, Waugh DS.

Methods Mol Biol. 2017;1607:1-15. doi: 10.1007/978-1-4939-7000-1_1.

PMID:
28573567
10.

Removal of Affinity Tags with TEV Protease.

Raran-Kurussi S, Cherry S, Zhang D, Waugh DS.

Methods Mol Biol. 2017;1586:221-230. doi: 10.1007/978-1-4939-6887-9_14.

PMID:
28470608
11.

A Small-Molecule Microarray Approach for the Identification of E2 Enzyme Inhibitors in Ubiquitin-Like Conjugation Pathways.

Zlotkowski K, Hewitt WM, Sinniah RS, Tropea JE, Needle D, Lountos GT, Barchi JJ Jr, Waugh DS, Schneekloth JS Jr.

SLAS Discov. 2017 Jul;22(6):760-766. doi: 10.1177/2472555216683937. Epub 2017 Jan 6.

12.
13.

A dual protease approach for expression and affinity purification of recombinant proteins.

Raran-Kurussi S, Waugh DS.

Anal Biochem. 2016 Jul 1;504:30-7. doi: 10.1016/j.ab.2016.04.006. Epub 2016 Apr 19.

14.

Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9.

Hewitt WM, Lountos GT, Zlotkowski K, Dahlhauser SD, Saunders LB, Needle D, Tropea JE, Zhan C, Wei G, Ma B, Nussinov R, Waugh DS, Schneekloth JS Jr.

Angew Chem Int Ed Engl. 2016 May 4;55(19):5703-7. doi: 10.1002/anie.201511351. Epub 2016 Apr 1.

15.

Crystal structures of MBP fusion proteins.

Waugh DS.

Protein Sci. 2016 Mar;25(3):559-71. doi: 10.1002/pro.2863. Epub 2016 Jan 9. Review.

16.

Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen.

Olson MA, Lee MS, Kissner TL, Alam S, Waugh DS, Saikh KU.

Sci Rep. 2015 Sep 18;5:14246. doi: 10.1038/srep14246. Erratum in: Sci Rep. 2018 Nov 19;8(1):17074.

17.

Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

Zhao BM, Keasey SL, Tropea JE, Lountos GT, Dyas BK, Cherry S, Raran-Kurussi S, Waugh DS, Ulrich RG.

PLoS One. 2015 Aug 24;10(8):e0134984. doi: 10.1371/journal.pone.0134984. eCollection 2015.

18.

Structure of human dual-specificity phosphatase 7, a potential cancer drug target.

Lountos GT, Austin BP, Tropea JE, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):650-6. doi: 10.1107/S2053230X1500504X. Epub 2015 May 20.

19.

Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity.

Needle D, Lountos GT, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1102-11. doi: 10.1107/S1399004715003521. Epub 2015 Apr 24.

20.

Positional effects of fusion partners on the yield and solubility of MBP fusion proteins.

Raran-Kurussi S, Keefe K, Waugh DS.

Protein Expr Purif. 2015 Jun;110:159-64. doi: 10.1016/j.pep.2015.03.004. Epub 2015 Mar 14.

Supplemental Content

Loading ...
Support Center