Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 44

1.

Arginine Kinases from the Precious Corals Corallium rubrum and Paracorallium japonicum: Presence of Two Distinct Arginine Kinase Gene Lineages in Cnidarians.

Matsuo T, Yano D, Uda K, Iwasaki N, Suzuki T.

Protein J. 2017 Dec;36(6):502-512. doi: 10.1007/s10930-017-9745-7.

PMID:
29022133
2.

Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family.

Uda K, Abe K, Dehara Y, Mizobata K, Edashige Y, Nishimura R, Radkov AD, Moe LA.

Amino Acids. 2017 Oct;49(10):1743-1754. doi: 10.1007/s00726-017-2472-8. Epub 2017 Jul 25.

PMID:
28744579
3.

Characterization of a homologue of mammalian serine racemase from Caenorhabditis elegans: the enzyme is not critical for the metabolism of serine in vivo.

Katane M, Saitoh Y, Uchiyama K, Nakayama K, Saitoh Y, Miyamoto T, Sekine M, Uda K, Homma H.

Genes Cells. 2016 Sep;21(9):966-77. doi: 10.1111/gtc.12398. Epub 2016 Jul 26.

4.

D-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria.

Radkov AD, McNeill K, Uda K, Moe LA.

Microbes Environ. 2016 Jun 25;31(2):165-8. doi: 10.1264/jsme2.ME15126. Epub 2016 May 11.

5.

Arginine kinase from Myzostoma cirriferum, a basal member of annelids.

Yano D, Mimura S, Uda K, Suzuki T.

Comp Biochem Physiol B Biochem Mol Biol. 2016 Aug;198:73-8. doi: 10.1016/j.cbpb.2016.04.004. Epub 2016 Apr 17.

PMID:
27095694
6.

Distribution and evolution of the serine/aspartate racemase family in invertebrates.

Uda K, Abe K, Dehara Y, Mizobata K, Sogawa N, Akagi Y, Saigan M, Radkov AD, Moe LA.

Amino Acids. 2016 Feb;48(2):387-402. doi: 10.1007/s00726-015-2092-0. Epub 2015 Sep 9.

PMID:
26352274
7.

Arginine kinases from the marine feather star Tropiometra afra macrodiscus: The first finding of a prenylation signal sequence in metazoan phosphagen kinases.

Chouno K, Yano D, Uda K, Fujita T, Iwasaki N, Suzuki T.

Comp Biochem Physiol B Biochem Mol Biol. 2015 Sep;187:55-61. doi: 10.1016/j.cbpb.2015.04.014. Epub 2015 May 9.

PMID:
25964010
8.

Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.

Tokuhiro S, Nagataki M, Jarilla BR, Uda K, Suzuki T, Sugiura T, Agatsuma T.

Mol Biochem Parasitol. 2014 Mar-Apr;194(1-2):56-63. doi: 10.1016/j.molbiopara.2014.04.010. Epub 2014 May 6.

PMID:
24815317
9.

Two arginine kinases of Tetrahymena pyriformis: characterization and localization.

Michibata J, Okazaki N, Motomura S, Uda K, Fujiwara S, Suzuki T.

Comp Biochem Physiol B Biochem Mol Biol. 2014 May;171:34-41. doi: 10.1016/j.cbpb.2014.03.008. Epub 2014 Apr 12.

PMID:
24726623
10.

The role of Y84 on domain 1 and Y87 on domain 2 of Paragonimus westermani taurocyamine kinase: Insights on the substrate binding mechanism of a trematode phosphagen kinase.

Jarilla BR, Tokuhiro S, Nagataki M, Uda K, Suzuki T, Acosta LP, Agatsuma T.

Exp Parasitol. 2013 Dec;135(4):695-700. doi: 10.1016/j.exppara.2013.10.008. Epub 2013 Oct 30.

PMID:
24184078
11.

Complete mitochondrial genomes of the Japanese pink coral (Corallium elatius) and the Mediterranean red coral (Corallium rubrum): a reevaluation of the phylogeny of the family Coralliidae based on molecular data.

Uda K, Komeda Y, Fujita T, Iwasaki N, Bavestrello G, Giovine M, Cattaneo-Vietti R, Suzuki T.

Comp Biochem Physiol Part D Genomics Proteomics. 2013 Sep;8(3):209-19. doi: 10.1016/j.cbd.2013.05.003. Epub 2013 Jun 2.

PMID:
23792378
12.

Gene structure of the two-domain taurocyamine kinase from Paragonimus westermani: evidence for a distinct lineage of trematode phosphagen kinases.

Jarilla BR, Tokuhiro S, Nagataki M, Uda K, Suzuki T, Acosta LP, Agatsuma T.

FEBS Lett. 2013 Jul 11;587(14):2278-83. doi: 10.1016/j.febslet.2013.05.061. Epub 2013 Jun 7.

13.

Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure.

Tokuhiro S, Uda K, Yano H, Nagataki M, Jarilla BR, Suzuki T, Agatsuma T.

Mol Biochem Parasitol. 2013 Apr;188(2):91-8. doi: 10.1016/j.molbiopara.2013.04.001. Epub 2013 Apr 16.

PMID:
23603791
14.

Characterization and origin of bacterial arginine kinases.

Suzuki T, Soga S, Inoue M, Uda K.

Int J Biol Macromol. 2013 Jun;57:273-7. doi: 10.1016/j.ijbiomac.2013.02.023. Epub 2013 Mar 21.

PMID:
23523720
15.

A novel taurocyamine kinase found in the protist Phytophthora infestans.

Uda K, Hoshijima M, Suzuki T.

Comp Biochem Physiol B Biochem Mol Biol. 2013 May;165(1):42-8. doi: 10.1016/j.cbpb.2013.03.003. Epub 2013 Mar 14.

PMID:
23499944
16.
17.

Cold-adapted features of arginine kinase from the deep-sea clam Calyptogena kaikoi.

Suzuki T, Yamamoto K, Tada H, Uda K.

Mar Biotechnol (NY). 2012 Jun;14(3):294-303. doi: 10.1007/s10126-011-9411-6. Epub 2011 Oct 21.

PMID:
22016076
18.

Molecular and catalytic properties of an arginine kinase from the nematode Ascaris suum.

Nagataki M, Uda K, Jarilla BR, Tokuhiro S, Wickramasinghe S, Suzuki T, Blair D, Agatsuma T.

J Helminthol. 2012 Sep;86(3):276-86. doi: 10.1017/S0022149X11000381. Epub 2011 Jul 25.

PMID:
21781373
19.

Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement.

Uda K, Komeda Y, Koyama H, Koga K, Fujita T, Iwasaki N, Suzuki T.

Gene. 2011 May 1;476(1-2):27-37. doi: 10.1016/j.gene.2011.01.019. Epub 2011 Feb 17.

PMID:
21310221
20.

Arginine kinase from the Tardigrade, Macrobiotus occidentalis: molecular cloning, phylogenetic analysis and enzymatic properties.

Uda K, Ishida M, Matsui T, Suzuki T.

Zoolog Sci. 2010 Oct;27(10):796-803. doi: 10.2108/zsj.27.796.

PMID:
20887177

Supplemental Content

Loading ...
Support Center