Format

Send to

Choose Destination
Gerontology. 2013;59(6):514-23. doi: 10.1159/000351207. Epub 2013 May 15.

The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches - a mini-review.

Author information

1
Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece.

Abstract

BACKGROUND:

Organisms are constantly exposed to physiological and environmental stresses and therefore require an efficient surveillance of genome and proteome quality in order to prevent disruption of homeostasis. Central to the intra- and extracellular proteome surveillance system are the molecular chaperones that contribute to both proteome maintenance and clearance. The conventional protein product of the apolipoprotein J/clusterin (CLU) gene is a heterodimeric secreted glycoprotein (also termed as sCLU) with a ubiquitous expression in human tissues. CLU exerts a small heat shock protein-like stress-induced chaperone activity and has been functionally implicated in numerous physiological processes as well as in ageing and most age-related diseases including tumorigenesis, neurodegeneration, and cardiovascular and metabolic syndromes.

OBJECTIVE:

The CLU gene is differentially regulated by a wide variety of stimuli due to the combined presence of many distinct regulatory elements in its promoter that make it an extremely sensitive cellular biosensor of environmental and/or oxidative stress. Downstream to CLU gene induction, the CLU protein seems to actively intervene in pathological states of increased oxidative injury due to its chaperone-related property to inhibit protein aggregation and precipitation (a main feature of oxidant injury), as well as due to its reported distribution in both extra- and, most likely, intracellular compartments.

CONCLUSION:

On the basis of these findings, CLU has emerged as a unique regulator of cellular proteostasis. Nevertheless, it seemingly exerts a dual function in pathology. For instance, in normal cells and during early phases of carcinogenesis, CLU may inhibit tumor progression as it contributes to suppression of proteotoxic stress. In advanced neoplasia, however, it may offer a significant survival advantage in the tumor by suppressing many therapeutic stressors and enhancing metastasis. This review will critically present a synopsis of recent novel findings that relate to the function of this amazing molecule and support the notion that CLU is a biosensor of oxidative injury; a common link between ageing and all pathologies where CLU has been implicated. Potential future perspectives, implications and opportunities for translational research and the development of new therapies will be discussed.

PMID:
23689375
DOI:
10.1159/000351207
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center