Format

Send to

Choose Destination

See 1 citation found by title matching your search:

N Biotechnol. 2016 Dec 25;33(6):842-851. doi: 10.1016/j.nbt.2016.08.001. Epub 2016 Aug 5.

Tobacco as platform for a commercial production of cyanophycin.

Author information

1
University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany. Electronic address: henrik.nausch@uni-rostock.de.
2
University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany.
3
University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Nutrition Physiology and Animal Nutrition, Justus-von-Liebig-Weg 6b, Mecklenburg-Western Pomerania, 18059, Rostock, Germany.
4
Martin-Luther-University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, Chair of Animal Nutrition, Theodor-Lieser-Str. 11, 06120, Halle (Saale), Germany.

Abstract

Cyanophycin (CP) is a proteinogenic polymer that can be substituted for petroleum in the production of plastic compounds and can also serve as a source of valuable dietary supplements. However, because there is no economically feasible system for large-scale industrial production, its application is limited. In order to develop a low-input system, CP-synthesis was established in the two commercial Nicotiana tabacum (N. tabacum) cultivars 'Badischer Geudertheimer' (BG) and 'Virginia Golta' (VG), by introducing the cyanophycin-synthetase gene from Thermosynecchococcus elongatus BP-1 (CphATe) either via crossbreeding with transgenic N. tabacum cv. Petit Havana SR1 (PH) T2 individual 51-3-2 or by agrobacterium-mediated transformation. Both in F1 hybrids (max. 9.4% CP/DW) and T0 transformants (max. 8.8% CP/DW), a substantial increase in CP content was achieved in leaf tissue, compared to a maximum of 1.7% CP/DW in PH T0 transformants of Hühns et al. (2008). In BG CP, yields were homogenous and there was no substantial difference in the variation of the CP content between primary transformants (T0), clones of T0 individuals, T1 siblings and F1 siblings of hybrids. Therefore, BG meets the requirements for establishing a master seed bank for continuous and reliable CP-production. In addition, it was shown that the polymer is not only stable in planta but also during silage, which simplifies storage of the harvest prior to isolation of CP.

KEYWORDS:

Badischer Geudertheimer; Commercial production; Cyanophycin; Nicotiana tabacum cv. Petit Havana SR1; Virginia Golta

PMID:
27501906
DOI:
10.1016/j.nbt.2016.08.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center