See 1 citation found by title matching your search:
PLoS One. 2008 May 21;3(5):e2208. doi: 10.1371/journal.pone.0002208.
The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes.
- 1
- Program in Neuroscience, Stanford University, Stanford, California, United States of America.
Abstract
BACKGROUND:
Caenorhabditis elegans locomotion is a simple behavior that has been widely used to dissect genetic components of behavior, synaptic transmission, and muscle function. Many of the paradigms that have been created to study C. elegans locomotion rely on qualitative experimenter observation. Here we report the implementation of an automated tracking system developed to quantify the locomotion of multiple individual worms in parallel.
METHODOLOGY/PRINCIPAL FINDINGS:
Our tracking system generates a consistent measurement of locomotion that allows direct comparison of results across experiments and experimenters and provides a standard method to share data between laboratories. The tracker utilizes a video camera attached to a zoom lens and a software package implemented in MATLAB. We demonstrate several proof-of-principle applications for the tracker including measuring speed in the absence and presence of food and in the presence of serotonin. We further use the tracker to automatically quantify the time course of paralysis of worms exposed to aldicarb and levamisole and show that tracker performance compares favorably to data generated using a hand-scored metric.
CONCLUSIONS/SIGNIFICANCE:
Although this is not the first automated tracking system developed to measure C. elegans locomotion, our tracking software package is freely available and provides a simple interface that includes tools for rapid data collection and analysis. By contrast with other tools, it is not dependent on a specific set of hardware. We propose that the tracker may be used for a broad range of additional worm locomotion applications including genetic and chemical screening.
Figure 1Worm tracker apparatus and representative worm tracks.
(A) Photograph of an apparatus for imaging and tracking worms. (B) Representative tracks generated by the worm tracker. The red×marks the worm's starting position. Track lengths were (top to bottom): 7.4, 5.4, 3.6, 8.0 and 6.6 mm. (C) Worm speed, as measured by the tracker for the tracks in B. Filled circles denote turning events; corresponding turns in B and C are marked using circles of the same color.
PLoS One. 2008;3(5):e2208.
Figure 2The effect of bacterial food and serotonin (5-HT) on worm locomotion.
Distributions of worm speeds measured on (A) NGM only (no food); (B) NGM+food (E. coli OP50); and (C) NGM+5-HT. In each experiment, approximately 20 worms were tracked for 30 s. Histograms are the average of five experiments. Error bars are s.e.m. In all cases, worms were tracked 30 minutes after they were transferred from their cultivation plates to the experimental plate. (D) Cumulative probability distributions derived from the plots in A–C.
PLoS One. 2008;3(5):e2208.
Figure 3Response of wild-type (N2) worms to aldicarb.
(A) Speed distributions of worms crawling on NGM containing 1 mM aldicarb at three time points. In each experiment, approximately 20 worms were tracked for 30 s. Histograms are the average of five experiments. Error bars are s.e.m. (B) Cumulative probability distributions derived from the data shown in A and similar experiments at three additional time points.
PLoS One. 2008;3(5):e2208.
Figure 4Responses of wild-type (N2) and slo-1 mutant worms to aldicarb and levamisole.
(A) Comparison of the worm tracker and manual scoring of paralysis for wild-type and slo-1 worms crawling on NGM containing 1 mM aldicarb. (B) Comparison of the time course of aldicarb-induced paralysis of wild-type and slo-1 worms. (C) Comparison of the time course of levamisole-induced paralysis of wild-type and slo-1 worms. Data in B and C were obtained using the worm tracker. In all three panels, points are the average fraction of paralyzed tracks observed at each time point (n = 5 assays). Bars are s.e.m.
PLoS One. 2008;3(5):e2208.
Publication types
MeSH terms
Grant support
Full Text Sources
Other Literature Sources
Miscellaneous