Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Cytokine. 2019 Aug 31;125:154833. doi: 10.1016/j.cyto.2019.154833. [Epub ahead of print]

Structure-based glycoengineering of interferon lambda 4 enhances its productivity and anti-viral potency.

Author information

1
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
2
Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
3
Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
4
Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
5
Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. Electronic address: ecshin@kaist.ac.kr.
6
Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea. Electronic address: hm_kim@kaist.ac.kr.

Abstract

Interferon lambda 4 (IFNλ4) has been recently known and studied for its role in hepatitis C virus (HCV) infection, but its clinical potential is significantly hampered due to its poor expression in vitro. Our study reports the successful production of IFNλ4 from a mammalian cell line through a glycoengineering and structure-based approach. We introduced de novo N-glycosylation of IFNλ4, guided by structural analysis, and produced IFNλ4 variants in Expi293F that displayed improved expression and potency. To preserve the structure and functionality of IFNλ4, the model structure of the IFNλ4 signaling complex was analyzed and the N-glycosylation candidate sites were selected. The receptor binding activity of engineered IFNλ4 variants and their receptor-mediated signaling pathway were similar to the E. coli version of IFNλ4 (eIFNλ4), while the antiviral activity and induction levels of interferon-stimulated gene (ISG) were all more robust in our variants. Our engineered IFNλ4 variants may be further developed for clinical applications and utilized in basic research to decipher the immunological roles of IFNλ4.

KEYWORDS:

Anti-viral activity; Glycoengineering; Homology modeling; IFNλ4; Type III interferon signaling

PMID:
31479875
DOI:
10.1016/j.cyto.2019.154833

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center