Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt A):2131-2142. doi: 10.1016/j.bbadis.2018.03.021. Epub 2018 Mar 28.

SURF1 knockout cloned pigs: Early onset of a severe lethal phenotype.

Author information

1
Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
2
University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK.
3
Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy.
4
Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Fondazione Avantea, Cremona, Italy.
5
Neurologic Institute Carlo Besta, Via G. Celoria 11, 20133 Milan, Italy.
6
Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy.
7
University of Cambridge/MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Rd, Cambridge CB20XY, UK. Electronic address: mdz21@mrc-mbu.cam.ac.uk.
8
Avantea, Laboratory of Reproductive Technologies, Via Porcellasco 7/f, Cremona 26100, Italy; Dept. of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy. Electronic address: cesaregalli@avantea.it.

Abstract

Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephalopathy, leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial protein involved in COX assembly, are among the most common causes of LS. LSSURF1 patients display severe, isolated COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1-/- mice show diffuse COX deficiency, but fail to recapitulate the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1 gene, disrupted it in pig primary fibroblast cell lines using both TALENs and CRISPR/Cas9 genome editing systems, before finally generating SURF1-/- and SURF1-/+ pigs by Somatic Cell Nuclear Transfer (SCNT). SURF1-/- pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1-/+ and wild type littermates. Surprisingly, no obvious COX deficiency was detected in SURF1-/- tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX subunit-encoding genes were significantly down-regulated in SURF1-/- skeletal muscles. In addition, neuropathological findings, indicated a delay in central nervous system development of newborn SURF1-/- piglets. Our results suggest a broader role of sSURF1 in mitochondrial bioenergetics.

KEYWORDS:

Genome editing; Leigh syndrome; Mitochondrial disease; Pig; SURF1 KO

PMID:
29601977
PMCID:
PMC6018622
DOI:
10.1016/j.bbadis.2018.03.021
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center