Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Circ Res. 2015 Oct 9;117(9):793-803. doi: 10.1161/CIRCRESAHA.115.307157. Epub 2015 Aug 10.

S-Nitrosylation of Calcium-Handling Proteins in Cardiac Adrenergic Signaling and Hypertrophy.

Author information

1
From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.).
2
From the Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine (T.I., P.Y.S., S.K., K.K., K.I., S.H., P.J., D.B.B., M.K., K.D.B., F.I.), Cardiovascular Research Center, Division of Cardiology, Department of Medicine (K.M., A.A.A., K.D.B.), and Division of Rheumatology Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital and Harvard Medical School, Boston; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (P.Y.S.); Children's Hospital of Philadelphia Research Institute, Department of Pediatrics and Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania (P.-T.D., H.I.); Department of Research, Shriners Hospitals for Children (M.K.) and Department of Pharmacology (E.K.), University of Cincinnati College of Medicine, OH; and Institute for Transformative Molecular Medicine, Case Western Reserve University, Harrington Discovery Institute University Hospitals, Cleveland, OH (J.S.S.). fichinose@mgh.harvard.edu.

Abstract

RATIONALE:

The regulation of calcium (Ca(2+)) homeostasis by β-adrenergic receptor (βAR) activation provides the essential underpinnings of sympathetic regulation of myocardial function, as well as a basis for understanding molecular events that result in hypertrophic signaling and heart failure. Sympathetic stimulation of the βAR not only induces protein phosphorylation but also activates nitric oxide-dependent signaling, which modulates cardiac contractility. Nonetheless, the role of nitric oxide in βAR-dependent regulation of Ca(2+) handling has not yet been explicated fully.

OBJECTIVE:

To elucidate the role of protein S-nitrosylation, a major transducer of nitric oxide bioactivity, on βAR-dependent alterations in cardiomyocyte Ca(2+) handling and hypertrophy.

METHODS AND RESULTS:

Using transgenic mice to titrate the levels of protein S-nitrosylation, we uncovered major roles for protein S-nitrosylation, in general, and for phospholamban and cardiac troponin C S-nitrosylation, in particular, in βAR-dependent regulation of Ca(2+) homeostasis. Notably, S-nitrosylation of phospholamban consequent upon βAR stimulation is necessary for the inhibitory pentamerization of phospholamban, which activates sarcoplasmic reticulum Ca(2+)-ATPase and increases cytosolic Ca(2+) transients. Coincident S-nitrosylation of cardiac troponin C decreases myocardial sensitivity to Ca(2+). During chronic adrenergic stimulation, global reductions in cellular S-nitrosylation mitigate hypertrophic signaling resulting from Ca(2+) overload.

CONCLUSIONS:

S-Nitrosylation operates in concert with phosphorylation to regulate many cardiac Ca(2+)-handling proteins, including phospholamban and cardiac troponin C, thereby playing an essential and previously unrecognized role in cardiac Ca(2+) homeostasis. Manipulation of the S-nitrosylation level may prove therapeutic in heart failure.

KEYWORDS:

beta adrenergic; calcium; heart failure; myocardial contraction; nitric oxide; receptors

PMID:
26259881
PMCID:
PMC4600453
DOI:
10.1161/CIRCRESAHA.115.307157
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center