Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 276

1.

A QSP Model for Predicting Clinical Responses to Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade.

Milberg O, Gong C, Jafarnejad M, Bartelink IH, Wang B, Vicini P, Narwal R, Roskos L, Popel AS.

Sci Rep. 2019 Aug 2;9(1):11286. doi: 10.1038/s41598-019-47802-4.

2.

Anisotropic poly(lactic-co-glycolic acid) microparticles enable sustained release of a peptide for long-term inhibition of ocular neovascularization.

Kim J, Lima E Silva R, Shmueli RB, Mirando AC, Tzeng SY, Pandey NB, Ben-Akiva E, Popel AS, Campochiaro PA, Green JJ.

Acta Biomater. 2019 Jul 30. pii: S1742-7061(19)30543-4. doi: 10.1016/j.actbio.2019.07.054. [Epub ahead of print]

PMID:
31374338
3.

A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer.

Jafarnejad M, Gong C, Gabrielson E, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Popel AS.

AAPS J. 2019 Jun 24;21(5):79. doi: 10.1208/s12248-019-0350-x.

4.

In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model.

Wang H, Milberg O, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Santa-Maria CA, Popel AS.

R Soc Open Sci. 2019 May 22;6(5):190366. doi: 10.1098/rsos.190366. eCollection 2019 May.

5.

Tumor Ensemble-Based Modeling and Visualization of Emergent Angiogenic Heterogeneity in Breast Cancer.

Stamatelos SK, Bhargava A, Kim E, Popel AS, Pathak AP.

Sci Rep. 2019 Mar 27;9(1):5276. doi: 10.1038/s41598-019-40888-w.

6.

Dynamic Changes in Microvascular Flow Conductivity and Perfusion After Myocardial Infarction Shown by Image-Based Modeling.

Gkontra P, El-Bouri WK, Norton KA, Santos A, Popel AS, Payne SJ, Arroyo AG.

J Am Heart Assoc. 2019 Apr 2;8(7):e011058. doi: 10.1161/JAHA.118.011058.

7.

Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment.

Norton KA, Gong C, Jamalian S, Popel AS.

Processes (Basel). 2019 Jan;7(1). pii: 37. doi: 10.3390/pr7010037. Epub 2019 Jan 13.

8.

Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases.

Zhao C, Zhang Y, Popel AS.

Int J Mol Sci. 2019 Jan 19;20(2). pii: E421. doi: 10.3390/ijms20020421. Review.

9.

A collagen IV-derived peptide disrupts α5β1 integrin and potentiates Ang2/Tie2 signaling.

Mirando AC, Shen J, Silva RLE, Chu Z, Sass NC, Lorenc VE, Green JJ, Campochiaro PA, Popel AS, Pandey NB.

JCI Insight. 2019 Feb 21;4(4). pii: 122043. doi: 10.1172/jci.insight.122043. eCollection 2019 Feb 21.

10.

Quantitative Characterization of CD8+ T Cell Clustering and Spatial Heterogeneity in Solid Tumors.

Gong C, Anders RA, Zhu Q, Taube JM, Green B, Cheng W, Bartelink IH, Vicini P, Wang B, Popel AS.

Front Oncol. 2019 Jan 7;8:649. doi: 10.3389/fonc.2018.00649. eCollection 2018.

11.

Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection.

Zhang Y, Bazzazi H, Lima E Silva R, Pandey NB, Green JJ, Campochiaro PA, Popel AS.

Invest Ophthalmol Vis Sci. 2018 Oct 1;59(12):5266-5276. doi: 10.1167/iovs.17-23632.

12.

Author Correction: Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis.

Gkontra P, Norton KA, Żak MM, Clemente C, Agüero J, Ibáñez B, Santos A, Popel AS, Arroyo AG.

Sci Rep. 2018 Sep 25;8(1):14563. doi: 10.1038/s41598-018-32598-6.

13.

Computational modeling of synergistic interaction between αVβ3 integrin and VEGFR2 in endothelial cells: Implications for the mechanism of action of angiogenesis-modulating integrin-binding peptides.

Bazzazi H, Zhang Y, Jafarnejad M, Popel AS.

J Theor Biol. 2018 Oct 14;455:212-221. doi: 10.1016/j.jtbi.2018.06.029. Epub 2018 Jul 20.

PMID:
30036530
14.

Computer Simulation of TSP1 Inhibition of VEGF-Akt-eNOS: An Angiogenesis Triple Threat.

Bazzazi H, Zhang Y, Jafarnejad M, Isenberg JS, Annex BH, Popel AS.

Front Physiol. 2018 May 30;9:644. doi: 10.3389/fphys.2018.00644. eCollection 2018.

15.

Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis.

Jin K, Pandey NB, Popel AS.

Breast Cancer Res. 2018 Jun 14;20(1):54. doi: 10.1186/s13058-018-0981-3.

16.

Modeling triple-negative breast cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature.

Norton KA, Jin K, Popel AS.

J Theor Biol. 2018 Sep 7;452:56-68. doi: 10.1016/j.jtbi.2018.05.003. Epub 2018 May 8.

PMID:
29750999
17.

Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions.

Zhao C, Isenberg JS, Popel AS.

J Cell Mol Med. 2018 Apr;22(4):2086-2097. doi: 10.1111/jcmm.13565. Epub 2018 Feb 14. Review.

18.

Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells.

Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ.

J Biomed Mater Res A. 2018 Jun;106(6):1753-1764. doi: 10.1002/jbm.a.36360. Epub 2018 Feb 23.

19.

Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis.

Gkontra P, Norton KA, Żak MM, Clemente C, Agüero J, Ibáñez B, Santos A, Popel AS, Arroyo AG.

Sci Rep. 2018 Jan 30;8(1):1854. doi: 10.1038/s41598-018-19758-4. Erratum in: Sci Rep. 2018 Sep 25;8(1):14563.

20.

Therapeutic potential of an anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma.

Barbhuiya MA, Mirando AC, Simons BW, Lemtiri-Chlieh G, Green JJ, Popel AS, Pandey NB, Tran PT.

Oncotarget. 2017 Sep 21;8(60):101520-101534. doi: 10.18632/oncotarget.21148. eCollection 2017 Nov 24.

Supplemental Content

Loading ...
Support Center