Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 42

1.

Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution.

Wu Y, Broadaway KA, Raulerson CK, Scott LJ, Pan C, Ko A, He A, Tilford C, Fuchsberger C, Locke AE, Stringham HM, Jackson AU, Narisu N, Kuusisto J, Pajukanta P, Collins FS, Boehnke M, Laakso M, Lusis AJ, Civelek M, Mohlke KL.

Hum Mol Genet. 2019 Nov 6. pii: ddz263. doi: 10.1093/hmg/ddz263. [Epub ahead of print]

PMID:
31691812
2.

A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context.

Gallois A, Mefford J, Ko A, Vaysse A, Julienne H, Ala-Korpela M, Laakso M, Zaitlen N, Pajukanta P, Aschard H.

Nat Commun. 2019 Oct 21;10(1):4788. doi: 10.1038/s41467-019-12703-7.

3.

Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits.

Raulerson CK, Ko A, Kidd JC, Currin KW, Brotman SM, Cannon ME, Wu Y, Spracklen CN, Jackson AU, Stringham HM, Welch RP, Fuchsberger C, Locke AE, Narisu N, Lusis AJ, Civelek M, Furey TS, Kuusisto J, Collins FS, Boehnke M, Scott LJ, Lin DY, Love MI, Laakso M, Pajukanta P, Mohlke KL.

Am J Hum Genet. 2019 Oct 3;105(4):773-787. doi: 10.1016/j.ajhg.2019.09.001. Epub 2019 Sep 26.

PMID:
31564431
4.

Reverse gene-environment interaction approach to identify variants influencing body-mass index in humans.

Garske KM, Pan DZ, Miao Z, Bhagat YV, Comenho C, Robles CR, Benhammou JN, Alvarez M, Ko A, Ye CJ, Pisegna JR, Mohlke KL, Sinsheimer JS, Laakso M, Pajukanta P.

Nat Metab. 2019 Jun;1(6):630-642. doi: 10.1038/s42255-019-0071-6. Epub 2019 Jun 14.

PMID:
31538139
5.

Reverse GWAS: Using genetics to identify and model phenotypic subtypes.

Dahl A, Cai N, Ko A, Laakso M, Pajukanta P, Flint J, Zaitlen N.

PLoS Genet. 2019 Apr 5;15(4):e1008009. doi: 10.1371/journal.pgen.1008009. eCollection 2019 Apr.

6.

Genetic and environmental perturbations lead to regulatory decoherence.

Lea A, Subramaniam M, Ko A, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, Mononen N, Raitakari OT, Ala-Korpela M, Pajukanta P, Zaitlen N, Ayroles JF.

Elife. 2019 Mar 5;8. pii: e40538. doi: 10.7554/eLife.40538.

7.

Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits.

Freund MK, Burch KS, Shi H, Mancuso N, Kichaev G, Garske KM, Pan DZ, Miao Z, Mohlke KL, Laakso M, Pajukanta P, Pasaniuc B, Arboleda VA.

Am J Hum Genet. 2018 Oct 4;103(4):535-552. doi: 10.1016/j.ajhg.2018.08.017.

8.

Author Correction: Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

Pan DZ, Garske KM, Alvarez M, Bhagat YV, Boocock J, Nikkola E, Miao Z, Raulerson CK, Cantor RM, Civelek M, Glastonbury CA, Small KS, Boehnke M, Lusis AJ, Sinsheimer JS, Mohlke KL, Laakso M, Pajukanta P, Ko A.

Nat Commun. 2018 Aug 22;9(1):3472. doi: 10.1038/s41467-018-05849-3.

9.

Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

Pan DZ, Garske KM, Alvarez M, Bhagat YV, Boocock J, Nikkola E, Miao Z, Raulerson CK, Cantor RM, Civelek M, Glastonbury CA, Small KS, Boehnke M, Lusis AJ, Sinsheimer JS, Mohlke KL, Laakso M, Pajukanta P, Ko A.

Nat Commun. 2018 Apr 17;9(1):1512. doi: 10.1038/s41467-018-03554-9. Erratum in: Nat Commun. 2018 Aug 22;9(1):3472.

10.

ASElux: an ultra-fast and accurate allelic reads counter.

Miao Z, Alvarez M, Pajukanta P, Ko A.

Bioinformatics. 2018 Apr 15;34(8):1313-1320. doi: 10.1093/bioinformatics/btx762.

11.

Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family.

Nikkola E, Ko A, Alvarez M, Cantor RM, Garske K, Kim E, Gee S, Rodriguez A, Muxel R, Matikainen N, Söderlund S, Motazacker MM, Borén J, Lamina C, Kronenberg F, Schneider WJ, Palotie A, Laakso M, Taskinen MR, Pajukanta P.

Atherosclerosis. 2017 Sep;264:58-66. doi: 10.1016/j.atherosclerosis.2017.07.024. Epub 2017 Jul 22.

12.

Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits.

Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A, Tilford C, Saleem NK, Stančáková A, Scott LJ, Fuchsberger C, Stringham HM, Jackson AU, Narisu N, Chines PS, Small KS, Kuusisto J, Parks BW, Pajukanta P, Kirchgessner T, Collins FS, Gargalovic PS, Boehnke M, Laakso M, Mohlke KL, Lusis AJ.

Am J Hum Genet. 2017 Mar 2;100(3):428-443. doi: 10.1016/j.ajhg.2017.01.027.

13.

Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

Fejzo MS, Myhre R, Colodro-Conde L, MacGibbon KW, Sinsheimer JS, Reddy MVPL, Pajukanta P, Nyholt DR, Wright MJ, Martin NG, Engel SM, Medland SE, Magnus P, Mullin PM.

Mol Cell Endocrinol. 2017 Jan 5;439:308-316. doi: 10.1016/j.mce.2016.09.017. Epub 2016 Sep 20.

14.

Regulation of alternative splicing in human obesity loci.

Kaminska D, Käkelä P, Nikkola E, Venesmaa S, Ilves I, Herzig KH, Kolehmainen M, Karhunen L, Kuusisto J, Gylling H, Pajukanta P, Laakso M, Pihlajamäki J.

Obesity (Silver Spring). 2016 Oct;24(10):2033-7. doi: 10.1002/oby.21587. Epub 2016 Aug 12.

15.

The Contribution of GWAS Loci in Familial Dyslipidemias.

Ripatti P, Rämö JT, Söderlund S, Surakka I, Matikainen N, Pirinen M, Pajukanta P, Sarin AP, Service SK, Laurila PP, Ehnholm C, Salomaa V, Wilson RK, Palotie A, Freimer NB, Taskinen MR, Ripatti S.

PLoS Genet. 2016 May 26;12(5):e1006078. doi: 10.1371/journal.pgen.1006078. eCollection 2016 May.

16.

Molecular Characterization of the Lipid Genome-Wide Association Study Signal on Chromosome 18q11.2 Implicates HNF4A-Mediated Regulation of the TMEM241 Gene.

Rodríguez A, Gonzalez L, Ko A, Alvarez M, Miao Z, Bhagat Y, Nikkola E, Cruz-Bautista I, Arellano-Campos O, Muñoz-Hernández LL, Ordóñez-Sánchez ML, Rodriguez-Guillen R, Mohlke KL, Laakso M, Tusie-Luna T, Aguilar-Salinas CA, Pajukanta P.

Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1350-5. doi: 10.1161/ATVBAHA.116.307182. Epub 2016 May 19.

17.

Remote Ischemic Conditioning Alters Methylation and Expression of Cell Cycle Genes in Aneurysmal Subarachnoid Hemorrhage.

Nikkola E, Laiwalla A, Ko A, Alvarez M, Connolly M, Ooi YC, Hsu W, Bui A, Pajukanta P, Gonzalez NR.

Stroke. 2015 Sep;46(9):2445-51. doi: 10.1161/STROKEAHA.115.009618. Epub 2015 Aug 6.

18.

An integrated, ontology-driven approach to constructing observational databases for research.

Hsu W, Gonzalez NR, Chien A, Pablo Villablanca J, Pajukanta P, Viñuela F, Bui AA.

J Biomed Inform. 2015 Jun;55:132-42. doi: 10.1016/j.jbi.2015.03.008. Epub 2015 Mar 26.

19.

Amerindian-specific regions under positive selection harbour new lipid variants in Latinos.

Ko A, Cantor RM, Weissglas-Volkov D, Nikkola E, Reddy PM, Sinsheimer JS, Pasaniuc B, Brown R, Alvarez M, Rodriguez A, Rodriguez-Guillen R, Bautista IC, Arellano-Campos O, Muñoz-Hernández LL, Salomaa V, Kaprio J, Jula A, Jauhiainen M, Heliövaara M, Raitakari O, Lehtimäki T, Eriksson JG, Perola M, Lohmueller KE, Matikainen N, Taskinen MR, Rodriguez-Torres M, Riba L, Tusie-Luna T, Aguilar-Salinas CA, Pajukanta P.

Nat Commun. 2014 Jun 2;5:3983. doi: 10.1038/ncomms4983.

20.

Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia.

Aguilar-Salinas CA, Tusie-Luna T, Pajukanta P.

Metabolism. 2014 Jul;63(7):887-94. doi: 10.1016/j.metabol.2014.03.012. Epub 2014 Mar 30. Review.

Supplemental Content

Loading ...
Support Center