Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 380

1.

Effect of four trace elements on Paenibacillus polymyxa Pp-7250 proliferation, activity and colonization in ginseng.

Gao Y, Liang J, Xiao R, Zang P, Zhao Y, Zhang L.

AMB Express. 2018 Oct 11;8(1):164. doi: 10.1186/s13568-018-0694-0.

2.

Positive and negative regulation of transferred nif genes mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa.

Wang T, Zhao X, Shi H, Sun L, Li Y, Li Q, Zhang H, Chen S, Li J.

PLoS Genet. 2018 Sep 28;14(9):e1007629. doi: 10.1371/journal.pgen.1007629. eCollection 2018 Sep.

3.

Evaluation of promoter sequences for the secretory production of a Clostridium thermocellum cellulase in Paenibacillus polymyxa.

Heinze S, Zimmermann K, Ludwig C, Heinzlmeir S, Schwarz WH, Zverlov VV, Liebl W, Kornberger P.

Appl Microbiol Biotechnol. 2018 Sep 26. doi: 10.1007/s00253-018-9369-7. [Epub ahead of print]

PMID:
30259100
4.

Two different restriction-modification systems for degrading exogenous DNA in Paenibacillus polymyxa.

Shen M, Chen Z, Mao X, Wang L, Liang J, Huo Q, Yin X, Qiu J, Sun D.

Biochem Biophys Res Commun. 2018 Oct 12;504(4):927-932. doi: 10.1016/j.bbrc.2018.09.016. Epub 2018 Sep 15.

PMID:
30224061
5.

An endophytic strain of genus Paenibacillus isolated from the fruits of Noni (Morinda citrifolia L.) has antagonistic activity against a Noni's pathogenic strain of genus Aspergillus.

Liu Y, Bai F, Li T, Yan H.

Microb Pathog. 2018 Sep 14;125:158-163. doi: 10.1016/j.micpath.2018.09.018. [Epub ahead of print]

PMID:
30223005
6.

Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A1.

Ballantine RD, Li YX, Qian PY, Cochrane SA.

Chem Commun (Camb). 2018 Sep 25;54(75):10634-10637. doi: 10.1039/c8cc05790g. Epub 2018 Sep 4.

7.

Immunomodulatory activity of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465.

Yegorenkova IV, Fomina AA, Tregubova KV, Konnova SA, Ignatov VV.

Arch Microbiol. 2018 Dec;200(10):1471-1480. doi: 10.1007/s00203-018-1564-5. Epub 2018 Aug 28.

PMID:
30155554
8.

Bacterial polysaccharides inhibit sucrose-induced hyperglycemia in silkworms.

Ishii M, Matsumoto Y, Sekimizu K.

Drug Discov Ther. 2018 Sep 18;12(4):185-188. doi: 10.5582/ddt.2018.01040. Epub 2018 Aug 24.

9.

2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis.

Dias BDC, Lima MEDNV, Vollú RE, da Mota FF, da Silva AJR, de Castro AM, Freire DMG, Seldin L.

Appl Microbiol Biotechnol. 2018 Oct;102(20):8773-8782. doi: 10.1007/s00253-018-9312-y. Epub 2018 Aug 19.

PMID:
30121751
10.

Complete Genome Sequence of Industrial Biocontrol Strain Paenibacillus polymyxa HY96-2 and Further Analysis of Its Biocontrol Mechanism.

Luo Y, Cheng Y, Yi J, Zhang Z, Luo Q, Zhang D, Li Y.

Front Microbiol. 2018 Jul 12;9:1520. doi: 10.3389/fmicb.2018.01520. eCollection 2018.

11.

Paenibacillus maysiensis sp. nov., a Nitrogen-Fixing Species Isolated from the Rhizosphere Soil of Maize.

Wang TS, Xie JY, Wang LY, Chen SF.

Curr Microbiol. 2018 Oct;75(10):1267-1273. doi: 10.1007/s00284-018-1519-8. Epub 2018 Jun 8.

PMID:
29948008
12.

Characterization and antifungal activity against Pestalotiopsis of a fusaricidin-type compound produced by Paenibacillus polymyxa Y-1.

Yang A, Zeng S, Yu L, He M, Yang Y, Zhao X, Jiang C, Hu D, Song B.

Pestic Biochem Physiol. 2018 May;147:67-74. doi: 10.1016/j.pestbp.2017.08.012. Epub 2017 Aug 15.

PMID:
29933995
13.

Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate.

Bohra V, Tikariha H, Dafale NA.

Appl Biochem Biotechnol. 2018 Jun 21. doi: 10.1007/s12010-018-2820-5. [Epub ahead of print]

PMID:
29926286
14.

Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis.

Arciola JM, Horenstein NA.

Biochem J. 2018 Jul 17;475(13):2241-2256. doi: 10.1042/BCJ20180340.

PMID:
29907615
15.

Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity.

Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY.

PLoS One. 2018 Jun 4;13(6):e0198107. doi: 10.1371/journal.pone.0198107. eCollection 2018. Erratum in: PLoS One. 2018 Jul 26;13(7):e0201624.

16.

Paenibacillus polymyxa ND25: candidate genome for lignocellulosic biomass utilization.

Bohra V, Dafale NA, Purohit HJ.

3 Biotech. 2018 May;8(5):248. doi: 10.1007/s13205-018-1274-3. Epub 2018 May 8.

PMID:
29744280
17.

Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination.

Zhang L, Cao C, Jiang R, Xu H, Xue F, Huang W, Ni H, Gao J.

Bioresour Technol. 2018 Aug;261:272-278. doi: 10.1016/j.biortech.2018.04.036. Epub 2018 Apr 11.

PMID:
29673996
18.

The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs.

Boto A, Pérez de la Lastra JM, González CC.

Molecules. 2018 Feb 1;23(2). pii: E311. doi: 10.3390/molecules23020311. Review.

19.

The antibacterial activity of LI-F type peptide against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and inhibition of infections in murine scalded epidermis.

Han J, Ma Z, Gao P, Lu Z, Liu H, Gao L, Lu W, Ju X, Lv F, Zhao H, Bie X.

Appl Microbiol Biotechnol. 2018 Mar;102(5):2301-2311. doi: 10.1007/s00253-017-8669-7. Epub 2018 Jan 26.

PMID:
29372300
20.

Genome Mining of the Lipopeptide Biosynthesis of Paenibacillus polymyxa E681 in Combination with Mass Spectrometry: Discovery of the Lipoheptapeptide Paenilipoheptin.

Vater J, Herfort S, Doellinger J, Weydmann M, Borriss R, Lasch P.

Chembiochem. 2018 Apr 4;19(7):744-753. doi: 10.1002/cbic.201700615. Epub 2018 Feb 23.

PMID:
29369464

Supplemental Content

Loading ...
Support Center