Send to

Choose Destination

See 1 citation:

J Biol Chem. 2004 Jul 30;279(31):33001-11. Epub 2004 May 20.

The evolutionarily conserved Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with REF protein and acts as an RNA export factor.

Author information

Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow, G11 5JR, Scotland, United Kingdom.


ORF57 (MTA) one of the earliest Kaposi's sarcoma-associated herpesvirus (KSHV) regulatory proteins to be expressed is essential for virus lytic replication. A counterpart is present in every herpesvirus sequenced, indicating the importance of this signature viral protein and those examined act post-transcriptionally, affecting RNA splicing and transport. In KSHV-infected cells, ORF57 protein was present in a complex with REF (Aly) and TAP (NXF1), factors involved in cellular mRNA export. The ORF57 N-terminal region interacts with REF, whereas both N- and C-terminal domains of REF interact with ORF57. The ORF57-REF interaction was direct, whereas TAP appeared to be recruited via REF. In somatic cells, ectopically expressed ORF57 protein was shown to function as a CRM1-independent nuclear mRNA export factor, promoting export of mRNAs that are poor substrates for splicing. The gamma-herpesvirus ORF57 protein, and its alpha-1 herpesvirus ICP27 counterpart both export RNA through pathways involving REF and TAP proteins, although divergence of these herpesvirus subfamilies occurred some 180-210 million years ago. The TAP-mediated cellular mRNA export pathway is CRM1-independent. However, human immunodeficiency virus type 1 Rev protein-mediated RNA export, which is CRM1-dependent, was considerably inhibited by ORF57, suggesting that Rev and ORF57 compete for a common export component. These data strengthen arguments that TAP and CRM1 pathways converge in accessing similar components of the nuclear pore complex. We propose that ORF57-mediated RNA export may use different export factors to accommodate the KSHV-infected host cell environments, for example, in B-cells or endothelial cells and during the different phases of lytic virus replication.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center