Format

Send to

Choose Destination
J Cell Biochem. 2017 Sep;118(9):2516-2527. doi: 10.1002/jcb.25948. Epub 2017 May 3.

Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma.

Author information

1
Sackler School of Graduate Studies, Tufts University School of Medicine, 136 Harrison Ave, Boston, Massachusetts 02111.
2
Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts 02215.
3
Department of Medicine, Division of Genetics, Harvard Medical School, 330 Brookline Ave, Boston, Massachusetts 02215.

Abstract

Glioblastoma Multiforme (GBM) is a highly malignant primary brain cancer that is associated with abysmal prognosis. The median survival of GBM patients is ∼15 months and there have not been any significant advance in therapies in over a decade, leaving treatment options limited. There is clearly an unmet need for GBM treatment. Immunotherapies are treatments based on usurping the power of the host's immune system to recognize and eliminate cancer cells. They have recently proven to be a successful strategy for combating a variety of cancers. Of the various types of immunotherapies, checkpoint blockade approaches have thus far produced significant clinical responses in several cancers including melanoma, non small-cell lung cancer, renal cancer, and prostate cancer. This review focuses on the biological rationale for using checkpoint blockade immunotherapeutic approaches in primary brain cancer and an up-to-date summary of current and ongoing checkpoint inhibitors-based clinical trials for malignant glioma. In addition, we expand on new concepts for further improving checkpoint blockade treatments, with a particular focus on the advantages of using genetically engineered mouse models for studies of immunotherapies in GBM. J. Cell. Biochem. 118: 2516-2527, 2017.

KEYWORDS:

CANCER; CHECKPOINT INHIBITORS; GENETICALLY ENGINEERED MOUSE MODELS; GLIOBLASTOMA MULTIFORME

PMID:
28230277
PMCID:
PMC5783695
DOI:
10.1002/jcb.25948
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center