Format

Send to

Choose Destination
Philos Trans R Soc Lond B Biol Sci. 2015 Oct 19;370(1680):20140374. doi: 10.1098/rstb.2014.0374.

T cell engineering as therapy for cancer and HIV: our synthetic future.

Author information

1
Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA cjune@exchange.upenn.edu.
2
Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104-5156, USA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA.

Abstract

It is now well established that the immune system can control and eliminate cancer cells. Adoptive T cell transfer has the potential to overcome the significant limitations associated with vaccine-based strategies in patients who are often immune compromised. Application of the emerging discipline of synthetic biology to cancer, which combines elements of genetic engineering and molecular biology to create new biological structures with enhanced functionalities, is the subject of this overview. Various chimeric antigen receptor designs, manufacturing processes and study populations, among other variables, have been tested and reported in recent clinical trials. Many questions remain in the field of engineered T cells, but the encouraging response rates pave a wide road for future investigation into fields as diverse as cancer and chronic infections.

KEYWORDS:

cancer; immunotherapy; synthetic biology

PMID:
26416683
PMCID:
PMC4634001
DOI:
10.1098/rstb.2014.0374
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center