Format

Send to

Choose Destination

See 1 citation found by title matching your search:

J Clin Microbiol. 2007 Jun;45(6):1912-9. Epub 2007 Apr 25.

Outbreak of human metapneumovirus detected by use of the Vero E6 cell line in isolates collected in Yamagata, Japan, in 2004 and 2005.

Author information

1
Department of Microbiology, Yamagata Prefectural Institute of Public Health, Tokamachi, Yamagata 990-0031, Japan.

Abstract

A number of epidemiological studies have shown human metapneumovirus (hMPV) to be one of the most important viral agents associated with acute respiratory infections in humans. However, due to the difficulty in growing the virus, all epidemiological studies of hMPV infection have been performed on the basis of the molecular method. Thus, the development of a cell line suitable for the isolation of hMPV from clinical specimens is a crucial step for further research. Using the Vero E6 cell line, which could be stably maintained for 1 month without passage or medium change, we succeeded in isolating 79 strains from 4,112 specimens obtained in Yamagata, Japan, in 2004 and 2005. The total isolation rate was 1.9% (79/4,112). The monthly distribution revealed that hMPV infections occurred between February and April in 2004 and throughout most of the year in 2005. Phylogenetic analysis indicated that subgenogroup B2 was predominant in 2004, whereas three subgenogroups, A2, B1, and B2, had cocirculated in 2005. Although multiple subgenogroups cocirculated in 2005, each individual subgenogroup strain was found to predominate at specific sites. An infectivity assay of hMPV strains also indicated that the infection efficiency in Vero E6 cells was better than that in LLC-MK2 cells. Finally, we found that Vero E6 cells are useful for the isolation of hMPVs and that this utility might aid further research into hMPVs beyond the epidemiological data shown in this study.

PMID:
17460056
PMCID:
PMC1933089
DOI:
10.1128/JCM.01251-06
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Secondary source ID

Publication type

MeSH terms

Secondary source ID

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center