Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Neuron. 2016 Jul 6;91(1):119-32. doi: 10.1016/j.neuron.2016.05.016. Epub 2016 Jun 9.

Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

Author information

1
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany; University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland.
2
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany.
3
Lerner Research Institute, Cleveland Clinic, Department of Neurosciences, Cleveland, OH 44195, USA.
4
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany.
5
Bernstein Focus for Neurotechnology (BFNT) and School of Biology, Department of Systems Neuroscience, University of Göttingen, 37075 Göttingen, Germany.
6
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany.
7
Institute of Physiology, University of Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, 37077 Göttingen, Germany.
8
Institute of Physiology, University of Göttingen, 37073 Göttingen, Germany.
9
Universidad del País Vasco, CIBERNED and Departamento de Neurociencias and Achucarro Basque Center for Neuroscience, Leioa 48940, Spain.
10
Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany; Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
11
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany.
12
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center for Integrative Physiology and Molecular Medicine, Molecular Physiology, University of Saarland, Homburg 66421, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany. Electronic address: frank.kirchhoff@uks.eu.
13
Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen 37075, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany. Electronic address: nave@em.mpg.de.

Abstract

Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons.

PMID:
27292539
DOI:
10.1016/j.neuron.2016.05.016
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center