Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 31

1.

Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: A systematic review of the current evidence.

Tsilimigras DI, Ntanasis-Stathopoulos I, Bagante F, Moris D, Cloyd J, Spartalis E, Pawlik TM.

Surg Oncol. 2018 Jun;27(2):280-288. doi: 10.1016/j.suronc.2018.05.012. Epub 2018 May 8. Review.

PMID:
29937183
2.

miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: validation by bioinformatics and experimental analyses.

Jiang T, Ye L, Han Z, Liu Y, Yang Y, Peng Z, Fan J.

J Exp Clin Cancer Res. 2017 Sep 22;36(1):131. doi: 10.1186/s13046-017-0602-5.

3.

Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.

Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF, Ro SW.

Gastroenterology. 2017 Nov;153(5):1378-1391.e6. doi: 10.1053/j.gastro.2017.07.014. Epub 2017 Jul 20.

PMID:
28734833
4.

Genetic Heterogeneity in Therapy-Naïve Synchronous Primary Breast Cancers and Their Metastases.

Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, Shen R, Pareja F, Berman SH, Wang L, Pierga JY, Vincent-Salomon A, Viale A, Norton L, Sigal B, Weigelt B, Cottu P, Reis-Filho JS.

Clin Cancer Res. 2017 Aug 1;23(15):4402-4415. doi: 10.1158/1078-0432.CCR-16-3115. Epub 2017 Mar 28.

5.

Loss of SMAD4 Promotes Lung Metastasis of Colorectal Cancer by Accumulation of CCR1+ Tumor-Associated Neutrophils through CCL15-CCR1 Axis.

Yamamoto T, Kawada K, Itatani Y, Inamoto S, Okamura R, Iwamoto M, Miyamoto E, Chen-Yoshikawa TF, Hirai H, Hasegawa S, Date H, Taketo MM, Sakai Y.

Clin Cancer Res. 2017 Feb 1;23(3):833-844. doi: 10.1158/1078-0432.CCR-16-0520. Epub 2016 Aug 4.

6.

MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4.

Cheng D, Zhao S, Tang H, Zhang D, Sun H, Yu F, Jiang W, Yue B, Wang J, Zhang M, Yu Y, Liu X, Sun X, Zhou Z, Qin X, Zhang X, Yan D, Wen Y, Peng Z.

Oncotarget. 2016 Jul 19;7(29):45199-45213. doi: 10.18632/oncotarget.9900.

7.

Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.

Yan P, Klingbiel D, Saridaki Z, Ceppa P, Curto M, McKee TA, Roth A, Tejpar S, Delorenzi M, Bosman FT, Fiocca R.

Clin Cancer Res. 2016 Jun 15;22(12):3037-47. doi: 10.1158/1078-0432.CCR-15-0939. Epub 2016 Feb 9.

8.

Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array.

Di Marco M, Astolfi A, Grassi E, Vecchiarelli S, Macchini M, Indio V, Casadei R, Ricci C, D'Ambra M, Taffurelli G, Serra C, Ercolani G, Santini D, D'Errico A, Pinna AD, Minni F, Durante S, Martella LR, Biasco G.

Mol Med Rep. 2015 Nov;12(5):7479-84. doi: 10.3892/mmr.2015.4344. Epub 2015 Sep 22.

PMID:
26397140
9.

Loss of SMAD4 Promotes Colorectal Cancer Progression by Accumulation of Myeloid-Derived Suppressor Cells through the CCL15-CCR1 Chemokine Axis.

Inamoto S, Itatani Y, Yamamoto T, Minamiguchi S, Hirai H, Iwamoto M, Hasegawa S, Taketo MM, Sakai Y, Kawada K.

Clin Cancer Res. 2016 Jan 15;22(2):492-501. doi: 10.1158/1078-0432.CCR-15-0726. Epub 2015 Sep 4.

10.

The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis.

Ling H, Pickard K, Ivan C, Isella C, Ikuo M, Mitter R, Spizzo R, Bullock M, Braicu C, Pileczki V, Vincent K, Pichler M, Stiegelbauer V, Hoefler G, Almeida MI, Hsiao A, Zhang X, Primrose J, Packham G, Liu K, Bojja K, Gafà R, Xiao L, Rossi S, Song JH, Vannini I, Fanini F, Kopetz S, Zweidler-McKay P, Wang X, Ionescu C, Irimie A, Fabbri M, Lanza G, Hamilton SR, Berindan-Neagoe I, Medico E, Mirnezami A, Calin GA, Nicoloso MS.

Gut. 2016 Jun;65(6):977-989. doi: 10.1136/gutjnl-2015-309372. Epub 2015 Mar 24.

11.

SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma.

Hernanda PY, Chen K, Das AM, Sideras K, Wang W, Li J, Cao W, Bots SJ, Kodach LL, de Man RA, Ijzermans JN, Janssen HL, Stubbs AP, Sprengers D, Bruno MJ, Metselaar HJ, ten Hagen TL, Kwekkeboom J, Peppelenbosch MP, Pan Q.

Oncogene. 2015 Sep 24;34(39):5055-68. doi: 10.1038/onc.2014.425. Epub 2014 Dec 22.

PMID:
25531314
12.

Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma.

Wong CC, Tse AP, Huang YP, Zhu YT, Chiu DK, Lai RK, Au SL, Kai AK, Lee JM, Wei LL, Tsang FH, Lo RC, Shi J, Zheng YP, Wong CM, Ng IO.

Hepatology. 2014 Nov;60(5):1645-58. doi: 10.1002/hep.27320. Epub 2014 Oct 2.

PMID:
25048396
13.

Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma.

Ding ZY, Jin GN, Wang W, Chen WX, Wu YH, Ai X, Chen L, Zhang WG, Liang HF, Laurence A, Zhang MZ, Datta PK, Zhang B, Chen XP.

Hepatology. 2014 Nov;60(5):1620-36. doi: 10.1002/hep.27273. Epub 2014 Sep 25.

PMID:
24954480
14.

Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model.

Hara S, Morita R, Ogawa T, Segawa R, Takimoto N, Suzuki K, Hamadate N, Hayashi SM, Odachi A, Ogiwara I, Shibusawa S, Yoshida T, Shibutani M.

Exp Toxicol Pathol. 2014 Aug;66(5-6):225-34. doi: 10.1016/j.etp.2014.02.002. Epub 2014 Mar 26.

PMID:
24680176
15.

Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-β1-Smad4-PAI-1 axis.

Chen L, Lu X, Zeng T, Chen Y, Chen Q, Wu W, Yan X, Cai H, Zhang Z, Shao Q, Qin W.

Oncol Rep. 2014 Feb;31(2):885-93. doi: 10.3892/or.2013.2908. Epub 2013 Dec 6.

PMID:
24337404
16.

MicroRNA-224 targets SMAD family member 4 to promote cell proliferation and negatively influence patient survival.

Wang Y, Ren J, Gao Y, Ma JZ, Toh HC, Chow P, Chung AY, Ooi LL, Lee CG.

PLoS One. 2013 Jul 29;8(7):e68744. doi: 10.1371/journal.pone.0068744. Print 2013.

17.

L1-ORF1p, a Smad4 interaction protein, promotes proliferation of HepG2 cells and tumorigenesis in mice.

Zhu Y, Feng F, Yu J, Song B, Hu M, Gao X, Wang Y, Zhang Q.

DNA Cell Biol. 2013 Sep;32(9):531-40. doi: 10.1089/dna.2013.2097. Epub 2013 Jul 17.

PMID:
23863096
18.

Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1.

Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, Seki E.

Gastroenterology. 2013 May;144(5):1042-1054.e4. doi: 10.1053/j.gastro.2013.01.056. Epub 2013 Feb 4.

19.

Hepatocytic precursor (stem-like) WB-F344 cells reduce tumorigenicity of hepatoma CBRH-7919 cells via TGF-beta/Smad pathway.

Li WQ, Li YM, Guo J, Liu YM, Yang XQ, Ge HJ, Xu Y, Liu HM, He J, Yu HY.

Oncol Rep. 2010 Jun;23(6):1601-7.

PMID:
20428815
20.

Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model.

Ichimura R, Mizukami S, Takahashi M, Taniai E, Kemmochi S, Mitsumori K, Shibutani M.

Toxicol Appl Pharmacol. 2010 Aug 1;246(3):128-40. doi: 10.1016/j.taap.2010.04.016. Epub 2010 Apr 25.

PMID:
20423715

Supplemental Content

Loading ...
Support Center