Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 52


Visualization of Biofilm Formation in Candida albicans Using an Automated Microfluidic Device.

Gulati M, Ennis CL, Rodriguez DL, Nobile CJ.

J Vis Exp. 2017 Dec 14;(130). doi: 10.3791/56743.


Development and regulation of single- and multi-species Candida albicans biofilms.

Lohse MB, Gulati M, Johnson AD, Nobile CJ.

Nat Rev Microbiol. 2018 Jan;16(1):19-31. doi: 10.1038/nrmicro.2017.107. Epub 2017 Oct 3. Review.


The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals.

Jenull S, Tscherner M, Gulati M, Nobile CJ, Chauhan N, Kuchler K.

Sci Rep. 2017 Aug 16;7(1):8308. doi: 10.1038/s41598-017-08239-9.


Whole RNA-Sequencing and Transcriptome Assembly of Candida albicans and Candida africana under Chlamydospore-Inducing Conditions.

Giosa D, Felice MR, Lawrence TJ, Gulati M, Scordino F, Giuffrè L, Lo Passo C, D'Alessandro E, Criseo G, Ardell DH, Hernday AD, Nobile CJ, Romeo O.

Genome Biol Evol. 2017 Jul 1;9(7):1971-1977. doi: 10.1093/gbe/evx143.


Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

Tao L, Zhang Y, Fan S, Nobile CJ, Guan G, Huang G.

PLoS Genet. 2017 Aug 7;13(8):e1006949. doi: 10.1371/journal.pgen.1006949. eCollection 2017 Aug.


Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans.

Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL.

Cell Microbiol. 2017 Dec;19(12). doi: 10.1111/cmi.12767. Epub 2017 Oct 4.


S. oralis activates the Efg1 filamentation pathway in C. albicans to promote cross-kingdom interactions and mucosal biofilms.

Xu H, Sobue T, Bertolini M, Thompson A, Vickerman M, Nobile CJ, Dongari-Bagtzoglou A.

Virulence. 2017 Nov 17;8(8):1602-1617. doi: 10.1080/21505594.2017.1326438. Epub 2017 Jun 1.


Assessment and Optimizations of Candida albicans In Vitro Biofilm Assays.

Lohse MB, Gulati M, Valle Arevalo A, Fishburn A, Johnson AD, Nobile CJ.

Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: e02749-16. doi: 10.1128/AAC.02749-16. Print 2017 May.


Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen Candida albicans.

Liang W, Guan G, Dai Y, Cao C, Tao L, Du H, Nobile CJ, Zhong J, Huang G.

Mol Microbiol. 2016 Nov;102(3):506-519. doi: 10.1111/mmi.13475. Epub 2016 Aug 18.


Global Identification of Biofilm-Specific Proteolysis in Candida albicans.

Winter MB, Salcedo EC, Lohse MB, Hartooni N, Gulati M, Sanchez H, Takagi J, Hube B, Andes DR, Johnson AD, Craik CS, Nobile CJ.

MBio. 2016 Sep 13;7(5). pii: e01514-16. doi: 10.1128/mBio.01514-16.


S-nitrosomycothiol reductase and mycothiol are required for survival under aldehyde stress and biofilm formation in Mycobacterium smegmatis.

Vargas D, Hageman S, Gulati M, Nobile CJ, Rawat M.

IUBMB Life. 2016 Aug;68(8):621-8. doi: 10.1002/iub.1524. Epub 2016 Jun 19.


The gray phenotype and tristable phenotypic transitions in the human fungal pathogen Candida tropicalis.

Zhang Y, Tao L, Zhang Q, Guan G, Nobile CJ, Zheng Q, Ding X, Huang G.

Fungal Genet Biol. 2016 Aug;93:10-6. doi: 10.1016/j.fgb.2016.05.006. Epub 2016 May 28.


Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch.

Hernday AD, Lohse MB, Nobile CJ, Noiman L, Laksana CN, Johnson AD.

MBio. 2016 Jan 26;7(1):e01565-15. doi: 10.1128/mBio.01565-15.


Molecular Characterization of the N-Acetylglucosamine Catabolic Genes in Candida africana, a Natural N-Acetylglucosamine Kinase (HXK1) Mutant.

Felice MR, Gulati M, Giuffrè L, Giosa D, Di Bella LM, Criseo G, Nobile CJ, Romeo O, Scordino F.

PLoS One. 2016 Jan 25;11(1):e0147902. doi: 10.1371/journal.pone.0147902. eCollection 2016.


Candida albicans biofilms: development, regulation, and molecular mechanisms.

Gulati M, Nobile CJ.

Microbes Infect. 2016 May;18(5):310-21. doi: 10.1016/j.micinf.2016.01.002. Epub 2016 Jan 22. Review.


Candida albicans Biofilms and Human Disease.

Nobile CJ, Johnson AD.

Annu Rev Microbiol. 2015;69:71-92. doi: 10.1146/annurev-micro-091014-104330. Review.


Genome-Wide Chromatin Immunoprecipitation in Candida albicans and Other Yeasts.

Lohse MB, Kongsomboonvech P, Madrigal M, Hernday AD, Nobile CJ.

Methods Mol Biol. 2016;1361:161-84. doi: 10.1007/978-1-4939-3079-1_10.


N-Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts.

Du H, Guan G, Li X, Gulati M, Tao L, Cao C, Johnson AD, Nobile CJ, Huang G.

MBio. 2015 Sep 8;6(5):e01376-15. doi: 10.1128/mBio.01376-15.


An expanded regulatory network temporally controls Candida albicans biofilm formation.

Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD.

Mol Microbiol. 2015 Jun;96(6):1226-39. doi: 10.1111/mmi.13002. Epub 2015 Apr 23.


Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

Bertolini MM, Xu H, Sobue T, Nobile CJ, Del Bel Cury AA, Dongari-Bagtzoglou A.

Mol Oral Microbiol. 2015 Aug;30(4):307-22. doi: 10.1111/omi.12095. Epub 2015 Apr 20.

Supplemental Content

Loading ...
Support Center