Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 42

1.

Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

Viringipurampeer IA, Gregory-Evans CY, Metcalfe AL, Bashar E, Moritz OL, Gregory-Evans K.

Mol Neurobiol. 2018 Jun 18. doi: 10.1007/s12035-018-1192-8. [Epub ahead of print]

PMID:
29911255
2.

Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.

Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL.

Sci Rep. 2017 Jul 31;7(1):6920. doi: 10.1038/s41598-017-07153-4.

3.

Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa.

Vent-Schmidt RYJ, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL.

J Neurosci. 2017 Jan 25;37(4):1039-1054. doi: 10.1523/JNEUROSCI.1647-16.2016.

4.

Molecular basis for photoreceptor outer segment architecture.

Goldberg AF, Moritz OL, Williams DS.

Prog Retin Eye Res. 2016 Nov;55:52-81. doi: 10.1016/j.preteyeres.2016.05.003. Epub 2016 Jun 1. Review.

5.

NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration.

Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K.

Hum Mol Genet. 2016 Apr 15;25(8):1501-16. doi: 10.1093/hmg/ddw029. Epub 2016 Feb 7.

6.
7.

Photoreceptors at a glance.

Molday RS, Moritz OL.

J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687. Review.

8.

Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W.

FASEB J. 2015 Dec;29(12):4866-80. doi: 10.1096/fj.15-275677. Epub 2015 Jul 30.

9.

Preparation of Xenopus laevis retinal cryosections for electron microscopy.

Tam BM, Yang LL, Bogėa TH, Ross B, Martens G, Moritz OL.

Exp Eye Res. 2015 Jul;136:86-90. doi: 10.1016/j.exer.2015.05.014. Epub 2015 May 22.

PMID:
26008144
10.

Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.

Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL.

J Neurosci. 2014 Oct 1;34(40):13336-48. doi: 10.1523/JNEUROSCI.1655-14.2014.

11.

Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks.

Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL.

Invest Ophthalmol Vis Sci. 2014 May 15;55(6):3669-80. doi: 10.1167/iovs.13-13099.

12.

Targeting inflammation in emerging therapies for genetic retinal disease.

Viringipurampeer IA, Bashar AE, Gregory-Evans CY, Moritz OL, Gregory-Evans K.

Int J Inflam. 2013;2013:581751. doi: 10.1155/2013/581751. Epub 2013 Feb 21.

13.

Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation.

Lee DC, Hamm LM, Moritz OL.

Invest Ophthalmol Vis Sci. 2013 Mar 13;54(3):1859-67. doi: 10.1167/iovs.12-10953.

PMID:
23425694
14.

Influence of Iron Oxide Nanoparticles on Innate and Genetically Modified Secretion Profiles of Mesenchymal Stem Cells.

Bashar AE, Metcalfe A, Yanai A, Laver C, Häfeli UO, Gregory-Evans CY, Moritz OL, Matsubara JA, Gregory-Evans K.

IEEE Trans Magn. 2013 Jan 1;49(1):389-393.

15.

Generation of transgenic X. laevis models of retinal degeneration.

Tam BM, Lai CC, Zong Z, Moritz OL.

Methods Mol Biol. 2013;935:113-25. doi: 10.1007/978-1-62703-080-9_8.

PMID:
23150364
16.

Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles.

Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K.

Cell Transplant. 2012;21(6):1137-48. doi: 10.3727/096368911X627435. Epub 2012 Mar 8.

PMID:
22405427
17.

Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.

Lee DC, Vazquez-Chona FR, Ferrell WD, Tam BM, Jones BW, Marc RE, Moritz OL.

J Neurosci. 2012 Feb 8;32(6):2121-8. doi: 10.1523/JNEUROSCI.4752-11.2012.

18.

Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments.

Karan S, Tam BM, Moritz OL, Baehr W.

Vision Res. 2011 Nov;51(21-22):2304-11. doi: 10.1016/j.visres.2011.09.001. Epub 2011 Sep 12.

19.

In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding.

Ritter LM, Khattree N, Tam B, Moritz OL, Schmitz F, Goldberg AF.

J Neurosci. 2011 Aug 3;31(31):11231-43. doi: 10.1523/JNEUROSCI.2875-11.2011.

20.

Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa.

Moritz OL, Tam BM.

Adv Exp Med Biol. 2010;664:509-15. doi: 10.1007/978-1-4419-1399-9_58.

PMID:
20238053

Supplemental Content

Loading ...
Support Center