Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

The emergence of Ephexin5 as a therapeutic target in Alzheimer's disease.

Cook EK, Sell GL, Schaffer TB, Margolis SS.

Expert Opin Ther Targets. 2019 Apr;23(4):263-265. doi: 10.1080/14728222.2019.1586884. Epub 2019 Mar 5. No abstract available.

PMID:
30810053
2.

PKCĪµ Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5.

Schaffer TB, Smith JE, Cook EK, Phan T, Margolis SS.

Cell Rep. 2018 Nov 27;25(9):2470-2483.e8. doi: 10.1016/j.celrep.2018.11.005.

3.

Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome.

Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS.

Mol Cell. 2018 Jul 5;71(1):169-177.e6. doi: 10.1016/j.molcel.2018.06.013.

PMID:
29979964
4.

Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer's-like impairment in mice.

Sell GL, Schaffer TB, Margolis SS.

J Clin Invest. 2017 May 1;127(5):1646-1650. doi: 10.1172/JCI85504. Epub 2017 Mar 27.

5.

A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function.

Ramachandran KV, Margolis SS.

Nat Struct Mol Biol. 2017 Apr;24(4):419-430. doi: 10.1038/nsmb.3389. Epub 2017 Mar 13.

6.

A dual role for the RhoGEF Ephexin5 in regulation of dendritic spine outgrowth.

Hamilton AM, Lambert JT, Parajuli LK, Vivas O, Park DK, Stein IS, Jahncke JN, Greenberg ME, Margolis SS, Zito K.

Mol Cell Neurosci. 2017 Apr;80:66-74. doi: 10.1016/j.mcn.2017.02.001. Epub 2017 Feb 7.

7.

From UBE3A to Angelman syndrome: a substrate perspective.

Sell GL, Margolis SS.

Front Neurosci. 2015 Sep 15;9:322. doi: 10.3389/fnins.2015.00322. eCollection 2015. Review.

8.

Angelman Syndrome.

Margolis SS, Sell GL, Zbinden MA, Bird LM.

Neurotherapeutics. 2015 Jul;12(3):641-50. doi: 10.1007/s13311-015-0361-y. Review.

9.

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation.

Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME.

Cell. 2010 Oct 29;143(3):442-55. doi: 10.1016/j.cell.2010.09.038.

10.

Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2.

Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, Gibbons JA, Andersen JL, Freel CD, Tang W, He C, Kurokawa M, Wang Y, Margolis SS, Fissore RA, Kornbluth S.

Dev Cell. 2009 Jun;16(6):856-66. doi: 10.1016/j.devcel.2009.04.005. Erratum in: Dev Cell. 2010 Jan 19;18(1):165. Gibbon, Jennifer A [corrected to Gibbons, Jennifer A].

11.

Aven-dependent activation of ATM following DNA damage.

Guo JY, Yamada A, Kajino T, Wu JQ, Tang W, Freel CD, Feng J, Chau BN, Wang MZ, Margolis SS, Yoo HY, Wang XF, Dunphy WG, Irusta PM, Hardwick JM, Kornbluth S.

Curr Biol. 2008 Jul 8;18(13):933-42. doi: 10.1016/j.cub.2008.05.045. Epub 2008 Jun 19.

12.

A role for Cdc2- and PP2A-mediated regulation of Emi2 in the maintenance of CSF arrest.

Wu Q, Guo Y, Yamada A, Perry JA, Wang MZ, Araki M, Freel CD, Tung JJ, Tang W, Margolis SS, Jackson PK, Yamano H, Asano M, Kornbluth S.

Curr Biol. 2007 Feb 6;17(3):213-24.

13.

Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis.

Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, Virshup DM, Kornbluth S.

Cell. 2006 Nov 17;127(4):759-73.

14.

Enhanced sensitivity to cytochrome c-induced apoptosis mediated by PHAPI in breast cancer cells.

Schafer ZT, Parrish AB, Wright KM, Margolis SS, Marks JR, Deshmukh M, Kornbluth S.

Cancer Res. 2006 Feb 15;66(4):2210-8.

15.

A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25.

Margolis SS, Perry JA, Weitzel DH, Freel CD, Yoshida M, Haystead TA, Kornbluth S.

Mol Biol Cell. 2006 Apr;17(4):1779-89. Epub 2006 Feb 8.

16.

Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2.

Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S.

Cell. 2005 Oct 7;123(1):89-103.

17.

When the checkpoints have gone: insights into Cdc25 functional activation.

Margolis SS, Kornbluth S.

Cell Cycle. 2004 Apr;3(4):425-8. Epub 2004 Apr 1.

PMID:
15020839
18.

PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation.

Margolis SS, Walsh S, Weiser DC, Yoshida M, Shenolikar S, Kornbluth S.

EMBO J. 2003 Nov 3;22(21):5734-45.

19.
20.

C-terminal regions of the human telomerase catalytic subunit essential for in vivo enzyme activity.

Banik SS, Guo C, Smith AC, Margolis SS, Richardson DA, Tirado CA, Counter CM.

Mol Cell Biol. 2002 Sep;22(17):6234-46.

Supplemental Content

Loading ...
Support Center