Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Front Behav Neurosci. 2014 Jul 2;8:231. doi: 10.3389/fnbeh.2014.00231. eCollection 2014.

Impairment in extinction of contextual and cued fear following post-training whole-body irradiation.

Author information

1
Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA.
2
Department of Behavioral Neuroscience, Oregon Health and Science University , Portland, OR , USA ; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University , Portland, OR , USA ; Department of Neurology, Oregon Health and Science University , Portland, OR , USA ; Department of Radiation Medicine, Oregon Health and Science University , Portland, OR , USA.

Abstract

Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.

KEYWORDS:

anxiety; body weight; fear conditioning; irradiation; post-training; wild-type mice

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center