Send to

Choose Destination

See 1 citation found by title matching your search:

Am J Physiol Gastrointest Liver Physiol. 2010 Aug;299(2):G467-75. doi: 10.1152/ajpgi.00364.2009. Epub 2010 May 20.

Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase.

Author information

Dept. of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.


Intestinal alkaline phosphatase (IAP) is a small intestinal brush border enzyme that has been shown to function as a gut mucosal defense factor, but its precise mechanism of action remains unclear. We investigated the effects of IAP on specific bacteria and bacterial components to determine its molecular targets. Purulent fluid from a cecal ligation and puncture model, specific live and heat-killed bacteria (Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes), and a variety of proinflammatory ligands (LPS, CpG DNA, Pam-3-Cys, flagellin, and TNF) were incubated with or without calf IAP (cIAP). Phosphate release was determined by using a malachite green assay. The various fluids were applied to target cells (THP-1, parent HT-29, and IAP-expressing HT-29 cells) and IL-8 secretion measured by ELISA. cIAP inhibited IL-8 induction by purulent fluid in THP-1 cells by >35% (P < 0.005). HT29-IAP cells had a reduced IL-8 response specifically to gram-negative bacteria; >90% reduction compared with parent cells (P < 0.005). cIAP had no effect on live bacteria but attenuated IL-8 induction by heat-killed bacteria by >40% (P < 0.005). cIAP exposure to LPS and CpG DNA caused phosphate release and reduced IL-8 in cell culture by >50% (P < 0.005). Flagellin exposure to cIAP also resulted in reduced IL-8 secretion by >40% (P < 0.005). In contrast, cIAP had no effect on TNF or Pam-3-Cys. The mechanism of IAP action appears to be through dephosphorylation of specific bacterial components, including LPS, CpG DNA, and flagellin, and not on live bacteria themselves. IAP likely targets these bacterially derived molecules in its role as a gut mucosal defense factor.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center