Format

Send to

Choose Destination

See 1 citation found by title matching your search:

J Clin Invest. 2014 Jul;124(7):3172-86. doi: 10.1172/JCI72316. Epub 2014 May 27.

Four individually druggable MET hotspots mediate HGF-driven tumor progression.

Abstract

Activation of MET by HGF plays a key role in tumor progression. Using a recently developed llama platform that generates human-like immunoglobulins, we selected 68 different antibodies that compete with HGF for binding to MET. HGF-competing antibodies recognized 4 distinct hotspots localized in different MET domains. We identified 1 hotspot that coincides with the known HGF β chain binding site on blades 2-3 of the SEMA domain β-propeller. We determined that a second and a third hotspot lie within blade 5 of the SEMA domain and IPT domains 2-3, both of which are thought to bind to HGF α chain. Characterization of the fourth hotspot revealed a region across the PSI-IPT 1 domains not previously associated with HGF binding. Individual or combined targeting of these hotspots effectively interrupted HGF/MET signaling in multiple cell-based biochemical and biological assays. Selected antibodies directed against SEMA blades 2-3 and the PSI-IPT 1 region inhibited brain invasion and prolonged survival in a glioblastoma multiforme model, prevented metastatic disease following neoadjuvant therapy in a triple-negative mammary carcinoma model, and suppressed cancer cell dissemination to the liver in a KRAS-mutant metastatic colorectal cancer model. These results identify multiple regions of MET responsible for HGF-mediated tumor progression, unraveling the complexity of HGF-MET interaction, and provide selective molecular tools for targeting MET activity in cancer.

PMID:
24865428
PMCID:
PMC4071368
DOI:
10.1172/JCI72316
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center