Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors.

Trettel SG, Trimper JB, Hwaun E, Fiete IR, Colgin LL.

Nat Neurosci. 2019 Apr;22(4):609-617. doi: 10.1038/s41593-019-0359-6. Epub 2019 Mar 25.

PMID:
30911183
2.

A Map-like Micro-Organization of Grid Cells in the Medial Entorhinal Cortex.

Gu Y, Lewallen S, Kinkhabwala AA, Domnisoru C, Yoon K, Gauthier JL, Fiete IR, Tank DW.

Cell. 2018 Oct 18;175(3):736-750.e30. doi: 10.1016/j.cell.2018.08.066. Epub 2018 Sep 27.

PMID:
30270041
3.

Inferring circuit mechanisms from sparse neural recording and global perturbation in grid cells.

Widloski J, Marder MP, Fiete IR.

Elife. 2018 Jul 9;7. pii: e33503. doi: 10.7554/eLife.33503.

4.

Fundamental bound on the persistence and capacity of short-term memory stored as graded persistent activity.

Koyluoglu OO, Pertzov Y, Manohar S, Husain M, Fiete IR.

Elife. 2017 Sep 7;6. pii: e22225. doi: 10.7554/eLife.22225.

5.

Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

Yoon K, Lewallen S, Kinkhabwala AA, Tank DW, Fiete IR.

Neuron. 2016 Mar 2;89(5):1086-99. doi: 10.1016/j.neuron.2016.01.039. Epub 2016 Feb 18.

6.

Bias in Human Path Integration Is Predicted by Properties of Grid Cells.

Chen X, He Q, Kelly JW, Fiete IR, McNamara TP.

Curr Biol. 2015 Jun 29;25(13):1771-6. doi: 10.1016/j.cub.2015.05.031. Epub 2015 Jun 11.

7.

A model of grid cell development through spatial exploration and spike time-dependent plasticity.

Widloski J, Fiete IR.

Neuron. 2014 Jul 16;83(2):481-495. doi: 10.1016/j.neuron.2014.06.018. Erratum in: Neuron. 2014 Aug 20;83(4):989.

8.

Specific evidence of low-dimensional continuous attractor dynamics in grid cells.

Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR.

Nat Neurosci. 2013 Aug;16(8):1077-84. doi: 10.1038/nn.3450. Epub 2013 Jul 14.

9.

Fundamental limits on persistent activity in networks of noisy neurons.

Burak Y, Fiete IR.

Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17645-50. doi: 10.1073/pnas.1117386109. Epub 2012 Oct 9. Erratum in: Proc Natl Acad Sci U S A. 2017 May 16;114(20):E4117.

10.

Losing phase.

Fiete IR.

Neuron. 2010 May 13;66(3):331-4. doi: 10.1016/j.neuron.2010.04.040.

11.

Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.

Fiete IR, Senn W, Wang CZ, Hahnloser RH.

Neuron. 2010 Feb 25;65(4):563-76. doi: 10.1016/j.neuron.2010.02.003.

12.

Accurate path integration in continuous attractor network models of grid cells.

Burak Y, Fiete IR.

PLoS Comput Biol. 2009 Feb;5(2):e1000291. doi: 10.1371/journal.pcbi.1000291. Epub 2009 Feb 20.

13.

Grid cells: the position code, neural network models of activity, and the problem of learning.

Welinder PE, Burak Y, Fiete IR.

Hippocampus. 2008;18(12):1283-300. doi: 10.1002/hipo.20519. Review.

PMID:
19021263
14.

What grid cells convey about rat location.

Fiete IR, Burak Y, Brookings T.

J Neurosci. 2008 Jul 2;28(27):6858-71. doi: 10.1523/JNEUROSCI.5684-07.2008.

15.

Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances.

Fiete IR, Fee MS, Seung HS.

J Neurophysiol. 2007 Oct;98(4):2038-57. Epub 2007 Jul 25.

16.

Gradient learning in spiking neural networks by dynamic perturbation of conductances.

Fiete IR, Seung HS.

Phys Rev Lett. 2006 Jul 28;97(4):048104. Epub 2006 Jul 28.

PMID:
16907616
17.

Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong.

Fiete IR, Hahnloser RH, Fee MS, Seung HS.

J Neurophysiol. 2004 Oct;92(4):2274-82. Epub 2004 Apr 7.

Supplemental Content

Loading ...
Support Center