Format

Send to

Choose Destination
Eur J Pharm Biopharm. 2009 Jun;72(2):471-7. doi: 10.1016/j.ejpb.2009.01.002.

Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen.

Author information

1
Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.

Abstract

Salvinorin A is an unregulated potent hallucinogen isolated from the leaves of Salvia divinorum. It is the only known non-nitrogenous kappa-opioid selective agonist, and rivals synthetic lysergic acid diethylamide (LSD) in potency. The objective of this study was to characterize the in vitro transport, in vitro metabolism, and pharmacokinetic properties of Salvinorin A. The transport characteristics of Salvinorin A were assessed using MDCK-MDR1 cell monolayers. The P-glycoprotein (P-gp) affinity status was assessed by the P-gp ATPase assay. In vitro metabolism studies were performed with various specific human CYP450 isoforms and UGT2B7 to assess the metabolic characteristics of Salvinorin A. Cohorts (n = 3) of male Sprague Dawley rats were used to evaluate the pharmacokinetics and brain distribution of Salvinorin A (10 mg/kg, intraperitoneal (i.p.) over a 240-min period. A validated UV-HPLC and LC/MS/MS method was used to quantify the hallucinogen concentrations obtained from the in vitro and in vivo studies, respectively. Salvinorin A displayed a high secretory transport in the MDCK-MDR1 cells (4.07 +/- 1.34 x 10(-)5 cm/s). Salvinorin A also stimulated the P-gp ATPase activity in a concentration (5 and 10 microM)-dependent manner, suggesting that it may be a substrate of (P-gp). A significant decrease in Salvinorin A concentration ranging from 14.7 +/- 0.80% to 31.1 +/- 1.20% was observed after incubation with CYP2D6, CYP1A1, CYP2C18, and CYP2E1, respectively. A significant decrease was also observed after incubation with UGT2B7. These results suggest that Salvinorin A maybe a substrate of UGT2B7, CYP2D6, CYP1A1, CYP2E1, and CYP2C18. The in vivo pharmacokinetic study showed a relatively fast elimination with a half-life (t1/2) of 75 min and a clearance (Cl/F) of 26 L/h/kg. The distribution was extensive (Vd of 47.1 L/kg); however, the brain to plasma ratio was 0.050. Accordingly, the brain half-life was relatively short, 36 min. Salvinorin A is rapidly eliminated after i.p. dosing, in accordance with its fast onset and short duration of action. Further, it appears to be a substrate for various oxidative enzymes and multi-drug resistant protein, P-gp.

PMID:
19462483
PMCID:
PMC2719774
DOI:
10.1016/j.ejpb.2009.01.002
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center