Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Structure of the CLC-1 chloride channel from Homo sapiens.

Park E, MacKinnon R.

Elife. 2018 May 29;7. pii: e36629. doi: 10.7554/eLife.36629.

2.

Structural and Mechanistic Insights into Protein Translocation.

Rapoport TA, Li L, Park E.

Annu Rev Cell Dev Biol. 2017 Oct 6;33:369-390. doi: 10.1146/annurev-cellbio-100616-060439. Epub 2017 May 31. Review.

PMID:
28564553
3.

Structure of a CLC chloride ion channel by cryo-electron microscopy.

Park E, Campbell EB, MacKinnon R.

Nature. 2017 Jan 26;541(7638):500-505. doi: 10.1038/nature20812. Epub 2016 Dec 21.

4.

Crystal structure of a substrate-engaged SecY protein-translocation channel.

Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA.

Nature. 2016 Mar 17;531(7594):395-399. doi: 10.1038/nature17163. Epub 2016 Mar 7.

5.

Structure of the SecY channel during initiation of protein translocation.

Park E, Ménétret JF, Gumbart JC, Ludtke SJ, Li W, Whynot A, Rapoport TA, Akey CW.

Nature. 2014 Feb 6;506(7486):102-6. doi: 10.1038/nature12720. Epub 2013 Oct 23.

6.

Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation.

Park E, Lee JW, Yoo HM, Ha BH, An JY, Jeon YJ, Seol JH, Eom SH, Chung CH.

J Mol Biol. 2013 Aug 23;425(16):2940-54. doi: 10.1016/j.jmb.2013.05.011. Epub 2013 May 21.

PMID:
23707406
7.

Bacterial protein translocation requires only one copy of the SecY complex in vivo.

Park E, Rapoport TA.

J Cell Biol. 2012 Sep 3;198(5):881-93. doi: 10.1083/jcb.201205140. Epub 2012 Aug 27.

8.

Mechanisms of Sec61/SecY-mediated protein translocation across membranes.

Park E, Rapoport TA.

Annu Rev Biophys. 2012;41:21-40. doi: 10.1146/annurev-biophys-050511-102312. Epub 2011 Dec 16. Review.

PMID:
22224601
9.

Preserving the membrane barrier for small molecules during bacterial protein translocation.

Park E, Rapoport TA.

Nature. 2011 May 12;473(7346):239-42. doi: 10.1038/nature10014.

10.

HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis.

Lee JW, Park E, Jeong MS, Jeon YJ, Eom SH, Seol JH, Chung CH.

J Biol Chem. 2009 Nov 27;284(48):33475-84. doi: 10.1074/jbc.M109.045807. Epub 2009 Oct 1.

11.

Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent.

Park E, Lee JW, Eom SH, Seol JH, Chung CH.

J Biol Chem. 2008 Nov 28;283(48):33258-66. doi: 10.1074/jbc.M805411200. Epub 2008 Oct 6. Erratum in: J Biol Chem. 2009 Jun 19;284(25):17364.

12.

Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome.

Ménétret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW.

Structure. 2008 Jul;16(7):1126-37. doi: 10.1016/j.str.2008.05.003.

13.

Ribosome binding of a single copy of the SecY complex: implications for protein translocation.

Ménétret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skånland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW.

Mol Cell. 2007 Dec 28;28(6):1083-92.

14.

Nucleotide triphosphates inhibit the degradation of unfolded proteins by HslV peptidase.

Lee JW, Park E, Bang O, Eom SH, Cheong GW, Chung CH, Seol JH.

Mol Cells. 2007 Apr 30;23(2):252-7.

15.

Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase.

Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, Song JJ, Bang O, Seol JH, Wang J, Eom SH, Chung CH.

J Biol Chem. 2005 Jun 17;280(24):22892-8. Epub 2005 Apr 22.

Supplemental Content

Loading ...
Support Center