Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Nat Commun. 2019 Jul 23;10(1):3069. doi: 10.1038/s41467-019-10933-3.

Estimating the success of re-identifications in incomplete datasets using generative models.

Author information

1
Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium.
2
Department of Computing, Imperial College London, London, SW7 2AZ, UK.
3
Data Science Institute, Imperial College London, London, SW7 2AZ, UK.
4
Department of Computing, Imperial College London, London, SW7 2AZ, UK. deMontjoye@imperial.ac.uk.
5
Data Science Institute, Imperial College London, London, SW7 2AZ, UK. deMontjoye@imperial.ac.uk.

Abstract

While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We here propose a generative copula-based method that can accurately estimate the likelihood of a specific person to be correctly re-identified, even in a heavily incomplete dataset. On 210 populations, our method obtains AUC scores for predicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using our model, we find that 99.98% of Americans would be correctly re-identified in any dataset using 15 demographic attributes. Our results suggest that even heavily sampled anonymized datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR and seriously challenge the technical and legal adequacy of the de-identification release-and-forget model.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center