Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Oncotarget. 2017 Sep 16;8(55):93349-93359. doi: 10.18632/oncotarget.20967. eCollection 2017 Nov 7.

Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population.

Lin E1,2,3, Kuo PH4, Liu YL5, Yang AC6,7,8, Tsai SJ6,7.

Author information

1
Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
2
Vita Genomics, Inc., Taipei, Taiwan.
3
TickleFish Systems Corporation, Seattle, WA, USA.
4
Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.
5
Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan.
6
Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
7
Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
8
Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.

Abstract

Background:

Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population.

Methods:

A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured.

Results:

Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL.

Conclusions:

Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.

KEYWORDS:

Pathology Section; gene-gene interactions; genome-wide association studies; metabolic syndrome; single nucleotide polymorphisms

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no potential conflicts of interests.

Supplemental Content

Full text links

Icon for Impact Journals, LLC Icon for PubMed Central
Loading ...
Support Center