Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 112

1.

Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.

Robinett NG, Culbertson EM, Peterson RL, Sanchez H, Andes D, Nett JE, Culotta VC.

J Biol Chem. 2018 Dec 28. pii: jbc.RA118.007095. doi: 10.1074/jbc.RA118.007095. [Epub ahead of print]

2.

Antimicrobial action of calprotectin that does not involve metal withholding.

Besold AN, Culbertson EM, Nam L, Hobbs RP, Boyko A, Maxwell CN, Chazin WJ, Marques AR, Culotta VC.

Metallomics. 2018 Dec 12;10(12):1728-1742. doi: 10.1039/c8mt00133b.

PMID:
30206620
3.

Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence.

Liu NN, Uppuluri P, Broggi A, Besold A, Ryman K, Kambara H, Solis N, Lorenz V, Qi W, Acosta-Zaldívar M, Emami SN, Bao B, An D, Bonilla FA, Sola-Visner M, Filler SG, Luo HR, Engström Y, Ljungdahl PO, Culotta VC, Zanoni I, Lopez-Ribot JL, Köhler JR.

PLoS Pathog. 2018 Jul 30;14(7):e1007076. doi: 10.1371/journal.ppat.1007076. eCollection 2018 Jul.

4.

Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens.

Schatzman SS, Culotta VC.

ACS Infect Dis. 2018 Jun 8;4(6):893-903. doi: 10.1021/acsinfecdis.8b00026. Epub 2018 Mar 14.

5.

Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.

Robinett NG, Peterson RL, Culotta VC.

J Biol Chem. 2018 Mar 30;293(13):4636-4643. doi: 10.1074/jbc.TM117.000182. Epub 2017 Dec 19. Review.

PMID:
29259135
6.

Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis.

Rossi DCP, Gleason JE, Sanchez H, Schatzman SS, Culbertson EM, Johnson CJ, McNees CA, Coelho C, Nett JE, Andes DR, Cormack BP, Culotta VC.

PLoS Pathog. 2017 Dec 1;13(12):e1006763. doi: 10.1371/journal.ppat.1006763. eCollection 2017 Dec.

7.

A role for Candida albicans superoxide dismutase enzymes in glucose signaling.

Broxton CN, He B, Bruno VM, Culotta VC.

Biochem Biophys Res Commun. 2018 Jan 1;495(1):814-820. doi: 10.1016/j.bbrc.2017.11.084. Epub 2017 Nov 14.

8.

The role of calprotectin in withholding zinc and copper from Candida albicans.

Besold AN, Gilston BA, Radin JN, Ramsoomair C, Culbertson EM, Li CX, Cormack BP, Chazin WJ, Kehl-Fie TE, Culotta VC.

Infect Immun. 2017 Nov 13. pii: IAI.00779-17. doi: 10.1128/IAI.00779-17. [Epub ahead of print]

9.

An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

Broxton CN, Culotta VC.

PLoS One. 2016 Dec 29;11(12):e0168400. doi: 10.1371/journal.pone.0168400. eCollection 2016.

10.

The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.

Peterson RL, Galaleldeen A, Villarreal J, Taylor AB, Cabelli DE, Hart PJ, Culotta VC.

J Biol Chem. 2016 Sep 30;291(40):20911-20923. Epub 2016 Aug 17.

11.

The Yin and Yang of copper during infection.

Besold AN, Culbertson EM, Culotta VC.

J Biol Inorg Chem. 2016 Apr;21(2):137-44. doi: 10.1007/s00775-016-1335-1. Epub 2016 Jan 20. Review.

12.

SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection.

Broxton CN, Culotta VC.

PLoS Pathog. 2016 Jan 7;12(1):e1005295. doi: 10.1371/journal.ppat.1005295. eCollection 2016 Jan. Review. No abstract available.

13.

Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.

Li CX, Gleason JE, Zhang SX, Bruno VM, Cormack BP, Culotta VC.

Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5336-42. doi: 10.1073/pnas.1513447112. Epub 2015 Sep 8.

14.

Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae.

Baron JA, Chen JS, Culotta VC.

Biochem Biophys Res Commun. 2015 Jul 3;462(3):251-6. doi: 10.1016/j.bbrc.2015.04.127. Epub 2015 May 6.

15.

Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.

Gleason JE, Galaleldeen A, Peterson RL, Taylor AB, Holloway SP, Waninger-Saroni J, Cormack BP, Cabelli DE, Hart PJ, Culotta VC.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5866-71. doi: 10.1073/pnas.1400137111. Epub 2014 Apr 7.

16.

Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

Gleason JE, Li CX, Odeh HM, Culotta VC.

J Biol Inorg Chem. 2014 Jun;19(4-5):595-603. doi: 10.1007/s00775-013-1045-x. Epub 2013 Sep 17.

17.

A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi.

Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, Seshu J, Hart PJ, Saito M, Culotta VC.

J Biol Chem. 2013 Mar 22;288(12):8468-78. doi: 10.1074/jbc.M112.433540. Epub 2013 Feb 2.

18.

SOD1 integrates signals from oxygen and glucose to repress respiration.

Reddi AR, Culotta VC.

Cell. 2013 Jan 17;152(1-2):224-35. doi: 10.1016/j.cell.2012.11.046.

19.

Superoxide triggers an acid burst in Saccharomyces cerevisiae to condition the environment of glucose-starved cells.

Baron JA, Laws KM, Chen JS, Culotta VC.

J Biol Chem. 2013 Feb 15;288(7):4557-66. doi: 10.1074/jbc.M112.409508. Epub 2012 Dec 31.

20.

Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast.

Culotta VC, Daly MJ.

Antioxid Redox Signal. 2013 Sep 20;19(9):933-44. doi: 10.1089/ars.2012.5093. Epub 2013 Feb 6. Review.

Supplemental Content

Loading ...
Support Center