Format

Send to

Choose Destination

See 1 citation found by title matching your search:

J Cell Biol. 2016 Feb 15;212(4):389-97. doi: 10.1083/jcb.201508026. Epub 2016 Feb 8.

Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

Author information

1
Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
2
Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 kkparker@seas.harvard.edu.

Abstract

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.

PMID:
26858266
PMCID:
PMC4754718
DOI:
10.1083/jcb.201508026
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center