Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 22

1.

Self-Assembly of the RZZ Complex into Filaments Drives Kinetochore Expansion in the Absence of Microtubule Attachment.

Pereira C, Reis RM, Gama JB, Celestino R, Cheerambathur DK, Carvalho AX, Gassmann R.

Curr Biol. 2018 Nov 5;28(21):3408-3421.e8. doi: 10.1016/j.cub.2018.08.056. Epub 2018 Oct 25.

2.

Employing the one-cell C. elegans embryo to study cell division processes.

Hattersley N, Lara-Gonzalez P, Cheerambathur D, Gomez-Cavazos JS, Kim T, Prevo B, Khaliullin R, Lee KY, Ohta M, Green R, Oegema K, Desai A.

Methods Cell Biol. 2018;144:185-231. doi: 10.1016/bs.mcb.2018.03.008. Epub 2018 May 1.

PMID:
29804670
3.

Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J, Joly N, Desai A, Doye V, Pintard L.

Dev Cell. 2017 Oct 23;43(2):157-171.e7. doi: 10.1016/j.devcel.2017.09.019.

4.

Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport.

Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R.

PLoS Genet. 2017 Jul 31;13(7):e1006941. doi: 10.1371/journal.pgen.1006941. eCollection 2017 Jul.

5.

Kinetochores accelerate or delay APC/C activation by directing Cdc20 to opposing fates.

Kim T, Lara-Gonzalez P, Prevo B, Meitinger F, Cheerambathur DK, Oegema K, Desai A.

Genes Dev. 2017 Jun 1;31(11):1089-1094. doi: 10.1101/gad.302067.117. Epub 2017 Jul 11.

6.

A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans.

Wang S, Tang NH, Lara-Gonzalez P, Zhao Z, Cheerambathur DK, Prevo B, Chisholm AD, Desai A, Oegema K.

Development. 2017 Jul 15;144(14):2694-2701. doi: 10.1242/dev.150094. Epub 2017 Jun 15.

7.

Dephosphorylation of the Ndc80 Tail Stabilizes Kinetochore-Microtubule Attachments via the Ska Complex.

Cheerambathur DK, Prevo B, Hattersley N, Lewellyn L, Corbett KD, Oegema K, Desai A.

Dev Cell. 2017 May 22;41(4):424-437.e4. doi: 10.1016/j.devcel.2017.04.013.

8.

Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly.

Gama JB, Pereira C, Simões PA, Celestino R, Reis RM, Barbosa DJ, Pires HR, Carvalho C, Amorim J, Carvalho AX, Cheerambathur DK, Gassmann R.

J Cell Biol. 2017 Apr 3;216(4):943-960. doi: 10.1083/jcb.201610108. Epub 2017 Mar 20.

9.

A Nucleoporin Docks Protein Phosphatase 1 to Direct Meiotic Chromosome Segregation and Nuclear Assembly.

Hattersley N, Cheerambathur D, Moyle M, Stefanutti M, Richardson A, Lee KY, Dumont J, Oegema K, Desai A.

Dev Cell. 2016 Sep 12;38(5):463-77. doi: 10.1016/j.devcel.2016.08.006.

10.

A TOGgle for Tension at Kinetochores.

Cheerambathur DK, Prevo B, Desai A.

Cell. 2016 Jun 2;165(6):1316-1318. doi: 10.1016/j.cell.2016.05.060.

11.

NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans.

Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K.

Elife. 2015 Sep 15;4:e08649. doi: 10.7554/eLife.08649.

12.

A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint.

Moyle MW, Kim T, Hattersley N, Espeut J, Cheerambathur DK, Oegema K, Desai A.

J Cell Biol. 2014 Mar 3;204(5):647-57. doi: 10.1083/jcb.201311015. Epub 2014 Feb 24.

13.

Linked in: formation and regulation of microtubule attachments during chromosome segregation.

Cheerambathur DK, Desai A.

Curr Opin Cell Biol. 2014 Feb;26:113-22. doi: 10.1016/j.ceb.2013.12.005. Epub 2014 Jan 7. Review.

14.

Crosstalk between microtubule attachment complexes ensures accurate chromosome segregation.

Cheerambathur DK, Gassmann R, Cook B, Oegema K, Desai A.

Science. 2013 Dec 6;342(6163):1239-42. doi: 10.1126/science.1246232. Epub 2013 Nov 14.

15.

Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores.

Varma D, Wan X, Cheerambathur D, Gassmann R, Suzuki A, Lawrimore J, Desai A, Salmon ED.

J Cell Biol. 2013 Sep 2;202(5):735-46. doi: 10.1083/jcb.201304197. Epub 2013 Aug 26.

16.

Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore.

Espeut J, Cheerambathur DK, Krenning L, Oegema K, Desai A.

J Cell Biol. 2012 Feb 20;196(4):469-82. doi: 10.1083/jcb.201111107. Epub 2012 Feb 13.

17.

Actomyosin-dependent cortical dynamics contributes to the prophase force-balance in the early Drosophila embryo.

Sommi P, Cheerambathur D, Brust-Mascher I, Mogilner A.

PLoS One. 2011 Mar 31;6(3):e18366. doi: 10.1371/journal.pone.0018366.

18.

Coupling between microtubule sliding, plus-end growth and spindle length revealed by kinesin-8 depletion.

Wang H, Brust-Mascher I, Cheerambathur D, Scholey JM.

Cytoskeleton (Hoboken). 2010 Nov;67(11):715-28. doi: 10.1002/cm.20482.

19.

A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical reorganization and spindle dynamics in Drosophila embryos.

Sommi P, Ananthakrishnan R, Cheerambathur DK, Kwon M, Morales-Mulia S, Brust-Mascher I, Mogilner A.

J Cell Sci. 2010 Jun 1;123(Pt 11):1862-72. doi: 10.1242/jcs.064048. Epub 2010 May 4.

20.

Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis.

Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM.

Mol Biol Cell. 2009 Mar;20(6):1749-62. doi: 10.1091/mbc.E08-10-1033. Epub 2009 Jan 21.

Supplemental Content

Loading ...
Support Center