Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 198

1.

Combined Inhibitory Effects of Citrinin, Ochratoxin-A and T-2 Toxin on Aquaporin-2.

Maroli N, Jayakrishnan A, Ramalingam Manoharan R, Kolandaivel P, Krishna K.

J Phys Chem B. 2019 Jun 16. doi: 10.1021/acs.jpcb.9b03829. [Epub ahead of print]

PMID:
31204482
2.

New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus.

Jung HJ, Kwon TH.

Kidney Res Clin Pract. 2019 Jun 30;38(2):145-158. doi: 10.23876/j.krcp.19.002.

3.

Arginine vasotocin (AVT)/mesotocin (MT) receptors in chickens: Evidence for the possible involvement of AVT-AVPR1 signaling in the regulation of oviposition and pituitary prolactin expression.

Wu C, Lv C, Wan Y, Li X, Zhang J, Li J, Wang Y.

Gen Comp Endocrinol. 2019 May 20;281:91-104. doi: 10.1016/j.ygcen.2019.05.013. [Epub ahead of print]

PMID:
31121165
4.

Rosiglitazone treatment restores renal responsiveness to atrial natriuretic peptide in rats with congestive heart failure.

Goltsman I, Khoury EE, Aronson D, Nativ O, Feuerstein GZ, Winaver J, Abassi Z.

J Cell Mol Med. 2019 May 13. doi: 10.1111/jcmm.14366. [Epub ahead of print]

5.

A novel AVPR2 missense mutation in an Asian family with inherited nephrogenic diabetes insipidus: A case report.

Zhang M, Yu Q, Chen C, Han J, Cheng B, Tian D.

Medicine (Baltimore). 2019 Apr;98(17):e15348. doi: 10.1097/MD.0000000000015348.

6.

Long-term outcome in inherited nephrogenic diabetes insipidus.

Sharma S, Ashton E, Iancu D, Arthus MF, Hayes W, Van't Hoff W, Kleta R, Bichet DG, Bockenhauer D.

Clin Kidney J. 2018 Apr 13;12(2):180-187. doi: 10.1093/ckj/sfy027. eCollection 2019 Apr.

7.

Germline-Derived Gain-of-Function Variants of Gsα-Coding GNAS Gene Identified in Nephrogenic Syndrome of Inappropriate Antidiuresis.

Miyado M, Fukami M, Takada S, Terao M, Nakabayashi K, Hata K, Matsubara Y, Tanaka Y, Sasaki G, Nagasaki K, Shiina M, Ogata K, Masunaga Y, Saitsu H, Ogata T.

J Am Soc Nephrol. 2019 May;30(5):877-889. doi: 10.1681/ASN.2018121268. Epub 2019 Apr 8.

PMID:
30962325
8.

Severe congenital nephrogenic diabetes insipidus in a compound heterozygote with a new large deletion of the AQP2 gene. A case report.

Peces R, Mena R, Peces C, Santos-Simarro F, Fernández L, Afonso S, Lapunzina P, Selgas R, Nevado J.

Mol Genet Genomic Med. 2019 Apr;7(4):e00568. doi: 10.1002/mgg3.568. Epub 2019 Feb 19.

9.

[Genetic diagnosis for a pedigree affected with hereditary nephrogenic diabetes insipidus].

Lu Z, Wu X, Zhou R, Kai K, Wen J, Xiong Q.

Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019 Feb 10;36(2):140-142. doi: 10.3760/cma.j.issn.1003-9406.2019.02.011. Chinese.

PMID:
30703232
10.

Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival.

Mohan S, Moffett RC, Thomas KG, Irwin N, Flatt PR.

Biochimie. 2019 Mar;158:191-198. doi: 10.1016/j.biochi.2019.01.008. Epub 2019 Jan 21.

PMID:
30677431
11.

Nephrogenic Diabetes Insipidus.

Kavanagh C, Uy NS.

Pediatr Clin North Am. 2019 Feb;66(1):227-234. doi: 10.1016/j.pcl.2018.09.006. Review.

PMID:
30454745
12.

Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data.

Ren YM, Duan YH, Sun YB, Yang T, Tian MQ.

J Orthop Surg Res. 2018 Nov 13;13(1):284. doi: 10.1186/s13018-018-0989-5.

13.

Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice.

Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL.

JCI Insight. 2018 Oct 4;3(19). pii: 99403. doi: 10.1172/jci.insight.99403.

14.

Four Japanese Patients with Congenital Nephrogenic Diabetes Insipidus due to the AVPR2 Mutations.

Namatame-Ohta N, Morikawa S, Nakamura A, Matsuo K, Nakajima M, Tomizawa K, Tanahashi Y, Tajima T.

Case Rep Pediatr. 2018 Jul 3;2018:6561952. doi: 10.1155/2018/6561952. eCollection 2018.

15.

Human β3-Adrenoreceptor is Resistant to Agonist-Induced Desensitization in Renal Epithelial Cells.

Milano S, Gerbino A, Schena G, Carmosino M, Svelto M, Procino G.

Cell Physiol Biochem. 2018;48(2):847-862. doi: 10.1159/000491916. Epub 2018 Jul 20.

16.

Phenotype heterogeneity of congenital adrenal hyperplasia due to genetic mosaicism and concomitant nephrogenic diabetes insipidus in a sibling.

Kor Y, Zou M, Al-Rijjal RA, Monies D, Meyer BF, Shi Y.

BMC Med Genet. 2018 Jul 11;19(1):115. doi: 10.1186/s12881-018-0629-2.

17.

A Novel Mutation in the AVPR2 Gene Causing Congenital Nephrogenic Diabetes Insipidus

Çelebi Tayfur A, Karaduman T, Özcan Türkmen M, Şahin D, Çaltık Yılmaz A, Büyükkaragöz B, Buluş AD, Mergen H.

J Clin Res Pediatr Endocrinol. 2018 Nov 29;10(4):350-356. doi: 10.4274/jcrpe.0097. Epub 2018 Jul 11.

18.

Preclinical Efficacy of [V4 Q5 ]dDAVP, a Second Generation Vasopressin Analog, on Metastatic Spread and Tumor-Associated Angiogenesis in Colorectal Cancer.

Garona J, Sobol NT, Pifano M, Segatori VI, Gomez DE, Ripoll GV, Alonso DF.

Cancer Res Treat. 2019 Apr;51(2):438-450. doi: 10.4143/crt.2018.040. Epub 2018 Jun 1.

19.

Oxytocin and arginine vasopressin systems in the domestication process.

Fam BSO, Paré P, Felkl AB, Vargas-Pinilla P, Paixão-Côrtes VR, Viscardi LH, Bortolini MC.

Genet Mol Biol. 2018;41(1 suppl 1):235-242. doi: 10.1590/1678-4685-GMB-2017-0069. Epub 2018 Mar 26.

20.

Novel and recurrent variants in AVPR2 in 19 families with X-linked congenital nephrogenic diabetes insipidus.

Joshi S, Kvistgaard H, Kamperis K, Færch M, Hagstrøm S, Gregersen N, Rittig S, Christensen JH.

Eur J Pediatr. 2018 Sep;177(9):1399-1405. doi: 10.1007/s00431-018-3132-z. Epub 2018 Mar 28.

PMID:
29594432

Supplemental Content

Loading ...
Support Center