Format

Send to

Choose Destination

See 1 citation found by title matching your search:

Biochim Biophys Acta. 1979 Jan 5;550(1):131-7.

Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer.

Abstract

The antagonizing action of hydrostatic pressure against anesthesia is well known. The present study was undertaken to quantitate the effects of hydrostatic pressure and anesthetics upon the phase-transition temperature of dipalmitoyl phosphatidylcholine vesicles. The drugs used to anesthetize the phospholipid vesicles included an inhalation anesthetic, halothane, a dissociable local anesthetic, lidocaine and an undissociable local anesthetic, benzyl alcohol. All anesthetics decreased the phase-transition temperature dose-dependently. In the case of lidocaine, the depression was pH dependent and only uncharged molecules were effective. The application of hydrostatic pressure increased the phase-transition temperature both in the presence and the absence of anesthetics. The temperature-pressure relationship was linear over the entire pressure range studied up to 340 bars. Through the use of Clapeyron-Clausius equation, the volume change accompanying the phase-transition of the membrane was calculated to be 27.0 cm3/mol. Although the anesthetics decreased the phase-transition temperature, the molar volume change accompanying the phase-transition was not altered. The anesthetics displaced the temperature-pressure lines parallel to each other. The mole fraction of the anesthetics in the liquid crystalline membrane, calculated from the van't Hoff equation, was independent of pressure. This implies that pressure does not displace the anesthetics from the liquid membrane, and the partition of these agents remains constant. The volume change of the anesthetized phospholipid membranes is entirely dependent upon the phase-transition and not on the space occupied by the anesthetics.

PMID:
581648
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center